

IWIN

Inventek Systems Wireless Interoperability Network

User's Manual

eS-WiFi Module AT Command Set

Inventek System, Inc.
AT Command Set Copyright and Company Information

Contact Information: Telephone: 978-667-1962 Fax: 978-667-1949

Location/Mailing Address: Inventek Systems 2 Republic Road, Billerica, MA 01862

Hours of Operation Monday - Friday U.S. EST 08:00 a.m. - 05:00 p.m.

Send E-mail inquiries to:
Sales Support:
Sales@inventeksys.com
Technical support:
Engineering@inventeksys.com

Inventek Systems
Embedding Connectivity Everywhere
 Copyright (c)2011-2017

Inventek Systems is a USA-based, full-service wireless solutions provider focused on 802.11 b/g/n WiFi embedded solutions, WiFi and Bluetooth combo modules, GPS embedded modules and antennas. We provide a wide range of standard and custom embedded options ranging from low cost system-in-a-package (SiP) products to modular based custom solutions. We provide complete services from consulting to custom design to cost effective high-volume manufacturing.

Copyright ©2017 Inventek Systems

AT Command Set User Manual Table of Contents

1. INTRODUCTION	
1.1 Scope	8
1.2 AT COMMAND USAGE IN THE USER MANUAL IS SHOWN AS	8
1.3 Supported Product Versions	8
1.4. AT COMMAND SET	8
1.4.1 Entering AT Commands	8
1.4.2 eS-WiFi Command Formats	<u>,</u>
All AT commands sent to the module must be formatted as follows:	9
All AT command responses from the module will follow this format:	
2 HARDWARE INTERFACE AND MODULE OPERATION	,/11
2.1 RS-232 Serial Communication	11
2.1.1 Data Mode	11
2.1.2 Flow Control	11
2.1.3 Supported Baud Rates	
2.1.4 Default Serial Configuration	11
2.2 USB (Universal Serial Bus)	11
2.3 SPI (SERIAL PERIPHERAL INTERFACE BUS)	11
2.4 MODULE OPERATION MODES	11
2.4.1 Human Readable Mode	11
2.4.2 Machine Readable Mode	
3. AT COMMAND SET VERSION 2.0	13
3.1 AT COMMAND SET LIST OF SUPPORTED FUNCTIONS	13
4. AT COMMAND DETAIL DESCRIPTION	16
4.1'?' PRINT HELP MESSAGE	16
4.2 '\$\$\$' Enter Command Mode	16
4.3 '' EXIT COMMAND MODE	16
4.4 Access Point	16
4.4.1 'A?' Show Access Point Settings	16
4.4.2 'A0' Activate Access Point	18
4.4.3 'A1' Set Access Point Security Mode	18
4.4.4 'A2' Set Security Key	18
4.4.5 'AA' Get AP DHCP Cached Address(es)	18
4.4.6 'AC' Set Access Point Channel	19
4.4.7 'AD' Activate Access Point Direct Connect Mode	19
4.4.8 'AE' Exit Access Point Direct Connect Mode	19
4.4.9 'AL' Set Access Point DHCP Lease Time	20
4.4.10 'AR' Get Client RSSI (SoftAP Only, Direct Connect Mode)	20
4.4.11 'AS' Set Access Point SSID	20
4.4.12 'AT' Set Maximum Number of AP Clients	20

	Embedding Connectivity Everywhere	DOC-UM-20035-4.6	User Manual eS-WiFi Module
4.5 9	SELECT COMMUNICATION INTERFACE		21
	4.5.1 'B?' Shows Communication In	nterface Settings	21
	4.5.2 'B2' Set SPI Mode		21
	4.5.3 'B3' Set SPI Ready Pin		21
4.6 (Configure Network Settings		23
	4.6.1 'CO' Join a Network		23
	4.6.2 'C1' Set Network SSID		23
	4.6.3 'C2' Set Network Passphrase		23
	4.6.4 'C3' Set Network Security Typ	oe	23
	4.6.5 'C4' Set Network DHCP		24
	4.6.6 'C5' Set Network IP Version		24
	4.6.7 'C6' Set Network IP Address		25
	4.6.8 'C7' Set Network IP Mask		25
	•		25
			25
	4.6.11 'CA' Set Network Secondary	DNS	25
			25
	4.6.13 'CC' Network Auto Connect		27
			27
			27
	4.6.17 'CJ' Join/Leave IGMP Group		27
	4.6.19 'CN' Sets or Gets the Countr	y Code	28
			28
	4.6.21 'CS' Connection Status		28
			29
			29
	4.6.24 'CW' Connect using WPS Pin	or PBC	29
	4.6.25 'C?' Show Network Settings		29
4.7 [ONS COMMANDS		30
	·		30
	4.7.2 'D1' Set mDNS State and Nan	ne	30
	4.7.3 'D2' Set mDNS Services		30
4.8 9	SCAN FOR NETWORK ACCESS POINTS		31
			31
	•		31
			32
			32
			32
			32
			32
4.10	GPIO / ADC INFORMATION		32
	•		33
			33
	•		33
			34
	4.10.5 'G?' Show GPIO Settings		35

Embedding Connectivity Everywhere	DC-UM-20035-4.6 User Manual eS-WiFi Module
4.11 SOFTWARE AND CONFIGURATION INFORMATION	35
4.11.1 'IC' Is Endpoint Configured	35
4.11.2 'I?' Show Applications Information	35
4.12 MISCELLANEOUS COMMANDS	36
4.12.1 'MF' Test External Serial Flash	36
4.12.2 'MJ' Manufacturing Test	36
4.12.3 'MR' Message Read (SPI Only)	36
4.12.4 'MS' Suppress Async Message DHCP	36
4.12.5 'MT' Set Message Type	37
4.13 Transport Communication	38
4.13.1 'P0' Set/Display Communication Socke	et38
4.13.2 'P1' Set Transport Protocol	
4.13.3 'P2' Set Transport Local Port Number	
	P Address39
4.13.5 'P4' Set Transport Remote Port Number	er39
4.13.6 'P5' Stop/Start Transport Server	40
4.13.7 'P6' Stop/Start Transport Client	40
4.13.8 'P7' Start/Stop Request TCP Loop	40
	40
	el41
4.13.11 'PA' Set Custom Certificate Authority	41
4.13.12 PB Set Root CA Verification Results .	41
	41
4.13.14 'PD' Write Security Key	41
4.13.15 'PE' Certificate Set Availability	42
4.13.16 'PF' Set Active Certificate	.,/42
4.13.17 'PG' Program CA, Certificate or key	42
4.13.18 'PK' TCP Keep-Alive	42
	42
4.13.20 'PY' Set TCP API Message Timeout	43
4.13.21 'PX' Set TCP Streaming Mode	43
4.13.22 'P?' Show Transport Settings	44
4.14 RECEIVE TRANSPORT DATA	45
	45
4.14.2 'R1' Set Read Transport Packet Size (by	ytes)45
4.14.3 'R2' Set Read Transport Timeout (ms)	45
4.14.4 'R3' Set Receive Mode	45
4.14.5 'R?' Show Read Transport Settings	45
4.15 WRITE TRANSPORT DATA	46
4.15.1 'S0' Write Transport Data	46
4.15.2 'S1' Set Write Transport Packet Size (b	ytes)46
4.15.3 'S2' Set Write Transport Timeout (ms)	46
4.15.4 'S3' Write Transport Data	46
4.15.5 'SF' SPI Flash CS Pin	46
4.15.6 'S?' Show Write Transport Settings	47
4.16 PING IP TARGET ADDRESS	47

Embedding Connectivity Everywhere	DOC-UM-20035-4.6	User Manual eS-WiFi Module
4.16.1 'TO' Ping IP Target Address		
4.16.2 'T1' Set Ping Target Address		47
4.16.3 'T2' Set Ping Repeat Count		47
4.16.4 'T3' Set Ping Delay (ms)		47
4.16.5 'T?' Show Ping Settings		47
4.17 CONFIGURE UART		48
4.17.1 'U0' Activate UART Settings		48
4.17.2 'U2' Set UART Baud Rate		48
4.17.3 'U?' Show UART Setting		49
4.18 WLAN		49
4.18.1 'WL' Set GPIOs for Link Status	and Activity	49
4.19 System Information Flash		50
· · · · · · · · · · · · · · · · · · ·		
4.19.4 'Z3' Set (Select) Factory/User S	pace	/51
	/	
	/	
	s	
4.19.8 'Z7' Set WPS Pin		51
	1	
-		
•	/	
_		
	and M4G Only, uses STM32F205/405 boo	
4.19.22 'Z?' Show System Settings		54
5 EXAMPLE ES-WIFI MODULE AT COMMA	ND USAGE	55
5.1 ENTERING HUMAN READABLE COMMAND MO	DE	55
5.2 CHANGING THE BAUD RATE		55
5.3 FIND ACCESS POINTS:		56
5.4 JOIN NETWORK ACCESS POINT		57
5.5 Ping a System on a Network		58
5.6 TRANSMISSION CONTROL PROTOCOL		59
5.6.1 TCP Server Set up and Data Trai	nsport	
•		
•	erver Mode	
	sport	
•		

Embedding Connectivity Everywhere	DOC-UM-20035-4.6	User Manual eS-WiFi Module
5.6.2.2 Read and Write TCP Data in	Client Mode	62
5.6.3 UDP Server Set Up and Data	Transport	62
5.6.3.1 UDP Server Set Up		63
5.6.3.2 Read and Write UDP Data in	n Server Mode	63
5.6.4 UDP Client Setup and Data Tr	ansport	64
		64
5.6.4.2 Read and Write UDP Data in	n Client Mode	65
5. APPENDIX A		66
7. DOCUMENT REVISION HISTORY		68

1. Introduction

1.1 Scope

The scope of this document is to introduce users to Inventek System's AT Command Set called IWIN for the eS-WiFi Module product, and to explain how to take advantage of the AT Command Set for Wi-Fi Communications.

When you purchase the Inventek module we have programmed our latest firmware for either UART or SPI onto the module. When you order your production parts, you need to specify your firmware build that you have qualified. Details are found in the product specifications.

The AT Command set is very simple to use and the default firmware is set for UART, 115K baud and you can download a free demo software program from the Inventek web site to exercise the module.

1.2 AT Command Usage in the User Manual is shown as

Usage: < AT Command > < optional '=' > < data if '=' is used > < Carriage Return (CR) >

or

< AT Command > < CR >

And default values are show as

Default: <AT Command>=<Value>

1.3 Supported Product Versions

This document covers the following currently available eS-WiFi modules and EVB's:

ISM43362-M3G-L44, ISM43362-M3G-EVB, ISMART43362 ISM43340-M4G-L44-10, ISM43340-M4G-EVB, ISMART43340 ISM4343-M4G-L54, ISM4343-M4G-EVB, ISMART4343 ISM43903-R48-L54, ISM43903-R48-EVB, ISMART43903 ISM43907-L170, ISM43907-EVB

1.4. AT Command Set

In the early 1980's, Hayes Microcomputer Products, Inc. was one of the first modern manufactures to use an 'AT' type Command Set to control operations of their modern products for communication over the Plain Old Telephone Service (POTS).

Since then a number of products have been developed for communications that use the 'AT Command Set' for device control.

'AT' is short for 'AT'tention, and is used to get the attention of a device for set up and control of it's functions. Normally, following the 'AT' command would be other letters and numbers that would control the functions associated with the command. For example, 'ATDT1234567' means ATtention modern Dial with Tone the number following the command, which in this case is 1234567.

Common practice today is to shorten the 'AT' command to just the function command, which using the example above, the shorten command to dial using tone for a number would be DT1234567.

1.4.1 Entering AT Commands

As mentioned above, it is common practice to drop the 'AT' in front of a device control command and just use the device control function command letters and number combinations. Inventek System has adopted this method for controlling the functions of the eS-WiFi module. In addition, Inventek System has added an '=' to the command to delimit the command from its data. For example, the AT Command to set the eS-WiFi module's IP Address would be 'C6=127.0.0.1' instead of 'ATC6=127.0.0.1.

Also, a number of AT Commands for the eS-WiFi module only use a single letter or a single letter plus number to execute the command. For instance, '?' will return available help information on the eS-WiFi module. While a 'C0' command would command the eS-WiFi module to joined a network.

The format for entering AT Commands is shown as follows:

< AT Command > < optional '=' > < data if '=' is used > < Carriage Return (CR) >

or

< AT Command > < CR >

All AT Commands must be followed by a <CR> to activate the command.

Empty string values for AT Commands are shown with 'NONE' in the User Manual.

The

Supported character sets:

The eS-WiFi module supports sending and receiving binary or ASCII data. All AT Commands must be in capital letters; however, data can contain binary bytes (0x00 to 0xFF).

1.4.2 eS-WiFi Command Formats

All AT commands sent to the module must be formatted as follows:

Command	Delimiter	payload	Delimiter
2 Character Command	=	Req Data	\r ¹
2 Character Command	=	F1,F2,F3 ²	\r ¹
2 Character Command	\r ¹		

Note 1: \r = Carriage Return

For example:

▶ P1=0\r

> PK=1,3000\r

▶ |?\

All AT command responses from the module will follow this format:

Response Formats					
Delimeter Payload		Delimeter	Return	Delimeter	Prompt
\r\n ¹	Data	\r\n¹	ОК	\r\n ¹	>sp ³
\r\n ¹	Error Type	\r\n¹	Usage	\r\n ¹	>sp ³

Notes:

1: \r = Carriage Return, \n=New Line

3: sp =>space

For example:

\r\nDATA\r\nOK\r\n>sp

\r\nERROR\r\nUSAGE\r\n>sp

ASCII

- ODOADATA0D0AOKODOA3E20
- ➤ ODOADATA0D0AUSAGEODOA3E20

AT Command to send Data can follow either of these formats:

Command	Delimiter	payload
S0	\r1	Binary data
		1-1460 bytes

Note 1: \r = Carriage Return

Command	Payload Size	Delimiter	Payload
S3	Number of Bytes to be sent	\r ¹	Binary data
			(1-1460 bytes)

Note 1: \r = Carriage Return

For example:

- > SODATA\r
- ➤ S3=77\rDATA77byteslong

2 Hardware Interface and Module Operation

The eS-WiFi module supports RS-232 Serial Communications Universal Serial Bus (USB), and Serial Peripheral Interface Bus (SPI). A Micro-Controller or System Host can easily interface to the eS-WiFi module using one of the support hardware interfaces.

The eS-WiFi module has two modes of operation: Human Readable Mode and Machine Readable Mode. We recommend using Machine Readable for your application.

2.1 RS-232 Serial Communication

2.1.1 Data Mode

When the eS-WiFi module is interfaced serially, the serial interface needs to be configured for 8 bit data, no parity, and one stop bit - (8-n-1).

2.1.2 Flow Control

The eS-WiFi module doesn't require or support Flow Control, so Flow Control should be 'None'

2.1.3 Supported Baud Rates

The eS-WiFi module supports the following serial baud rates:

Basic Rates: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600

Extended Rates: 1152000, 1382400, 1612800, 1834200, 2073600, 2304000, 2764800, 3686400, 3916800

2.1.4 Default Serial Configuration

The eS-WiFi module is shipped with the default serial configuration of 115,200 baud, 8 data bits, no party, and 1 stop bits.

Using the AT Commands you can change the default settings and save them using the AT command "Z1" and upon reset the module will default to your preferred baud rate. Users should save their default settings in what we define as "USER SPACE".

2.2 USB (Universal Serial Bus)

The eS-WiFi module no longer supports USB.

2.3 SPI (Serial Peripheral Interface Bus)

The eS-WiFi module supports SPI. SPI specific firmware needs to be flashed onto the module.

2.4 Module Operation Modes

The eS-WiFi module has two modes of operation, Human Readable Mode (verbose) and Machine Readable Mode, that can be used to control the operation of the module. At power up, the eS-WiFi module defaults to Machine Readable Mode. An AT command is used to put the eS-WiFi module into Human Readable Mode or Machine Readable Mode.

2.4.1 Human Readable Mode

In Human Readable Mode, a user can interact with the module via the module's built-in console and a serial terminal program. All AT commands will return detail information related to the operation of the command.

2.4.2 Machine Readable Mode

Machine Readable Mode is intended for direct control of the eS-WiFi module operation via a Micro-Controller or System Host. All AT commands will return short, limited information about operation of the command. This is the recommend mode of operation for your application

3. AT Command Set Version 2.0

3.1 AT Command Set List of Supported Functions

AT 0	Description
AT Command	Description
?	Print Help Message
\$\$\$	Enter Command Mode
	Exit Command mode
A0	Activate Access Point
A1	Set Access Point Security Mode
A2	Set Access Point Security Key
AA	Get AP DHCP Cache Address(es)
AC	Set Access Point Channel
AD	Activate Access Point Direct Connect Mode
AE	Exit Access Point Direct Connect Mode
AL	Set Access Point Lease Time
AR	Get Client RSSI (SoftAP Only)
AS	Set Access Point SSID
AT	Set Maximum Number of AP Clients
A?	Show Access Point Settings
B2	Set SPI Mode
B3	Set SPI Ready Pin
B?	Show Communication Interface Settings
C0	Join a Network
C1	Set Network SSID
C2	Set Network Passphrase
C3	Set Network Security Type
C4	Set Network DHCP Mode
C5	Set Network IP Version
C6	Set Network IP Address
C7	Set Network IP Mask
C8	Set Network Gateway
C9	Set Network Cateway Set Network Primary DNS
CA	Set Network Secondary DNS
СВ	Set Network Join Retry Count
CC	Network Auto Connect
CD	Disconnect from Network
CE	
CF	Set Authorization Type
	Set/Clear Packet Filters (PBM Only)
CJ	Join/Leave IGMP Group
CM	Add/Remove MAC To/From MCAST Allow List (PBM Only)
CN	Set Country Code (See Appendix A for Codes)
CR	Get RSSS of Associated Network Access Point
CS	Get Connection Status
CT	Set WPS PB pin
CV	Get Connected Bit Rate
CW	Connect using WPS Pin or PBC
C?	Show Network Settings
D0	DNS Lookup
D1	Enable mDNS
D2	Enable mDNS Service
F0	Scan for Network Access Points
F1	Set Scan Repeat Count
F2	Set Scan Delay (ms)

beduing Connectivity Everywhere	DOC-UM-20035-4.6	User Manual eS-W
F3	Set Scan Channel	
F4	Set Scan BBSID	
F5	Set Scan SSID	
F?	Show Scan Settings	
G2	Read GPIO/ADC	
G3	Write GPIO	
G4	GPIO Setup	
GT	Set UTC time	
G?	Show GPIO Settings	
I?	Show Application Information	
MF	Test External Serial Flash	
MJ	Manufacturing Test	
MR	Message Read (SPI Only)	
MS	Suppress Async Message DHCP	/
MT	Set Message Type	
P0	Set/Display Communication Socket	/
P1	Set Transport Protocol	/
P2	Set Transport Frotocol Set Transport Local Port Number	
P3	Set Transport Education Number Set Transport Remote Host IP Address	
P4	Set Transport Remote Port Number	/
	Stop/Start Transport Server	/
P5 P6		,
	Stop/Start Transport Client	
P7	Start/Stop Request TCP Loop	
P8	Set Listen Backlogs	
P9	SSL Certificate Authentication	
PA	Set Custom Certificate Authority	
PB	Set Root CA Verification Results	
PC	Security Certificates	
PD	Security Keys	
PE	Certificate Set Availability	
PF	Select Active Certificate Set	
PG	Program CA, Certificate or Key	
PK	TCP Keep-Alive	
PM	Show MQTT Attributes	
PX	Enable UART Streaming Mode	
PY	Set TCP API Message Timeout	
P?	Show Transport Settings	
R0	Read Transport Data	
R1 /	Set Read Transport Packet Size (bytes)	
R2 /	Set Read Transport Timeout (ms)	
R3 /	Receive Mode	
R?	Show Read Transport Settings	
S0	Write Transport Data	
S1 /	Set Write Transport Packet Size (bytes)	
S2	Set Write Transport Timeout (ms)	
S 3	Set Write Transport Timeout (ms)	
S?	Write Transport Data w/Packet Size	
T0	Ping Target Address	
T1	Set Ping Target Address	
T2	Set Ping Repeat Count	
T3	Set Ping Repeat Count Set Ping Delay (ms)	
T?	Show Ping Settings	
U0	Active UART Settings	
U2	Set UART BAUD Rate	
U?	Show UART Settings	
Z0	Reset to Factory Defaults	
Z1	Save Current Settings	

Z2	Clear Current Settings
Z 3	Set Factory/User Space
Z4	Set MAC Address
Z 5	Get MAC Address
Z 6	Set Access Point IP Address
Z 7	Set WPS (WiFi Protected Setup) Pin Number
Z8	Get WPS (WiFi Protected Setup) Pin Number
Z 9	Set USB VID/PID
ZC	Clear Factor Lock Switch
ZD	Flash Dump
ZF	Set Factory Lock Switch
ZN	Set Product Name
ZO	OTA Firmware Update
ZP	Power Management
ZR	Reset Module
ZS	Get Serial Number
ZT	Set Serial Number
ZU	Firmware Upgrade (M3G Only, use STM32F205 boot loader)
ZV	Set OTA Method
Z?	Show System Settings

Table 3.1: AT Command Set List

Note: Additional Commands added PG,PF, PM, PE

Note: PR and PW commands removed

4. AT Command Detail Description

4.1'?' Print Help Message

Print Help menu to console.

Usage: ?<CR>

Default Value: None

4.2 '\$\$\$' Enter Command Mode

Command (Human Readable) Mode is entered via '\$\$\$'. While in Command mode, all AT Commands return detail text formatted information to the user when the command is executed. Command Mode is helpful when debugging network interfaces or interaction with the eS-WiFi module.

Usage: \$\$\$<CR>

Default Value: None

Response from eS-WiFi: >

Entering CMD Mode

OK

4.3 '---' Exit Command Mode

Command Mode is exited via '---', which places the eS-WiFi module in Machine Readable mode where AT Commands generate short, limited coma delimited information on the execution of a command. Machine mode is intended for Micro-Controller or Host System control of the eS-WiFi module. This document is focused on users connecting the eS-WiFi to a microcontroller so the responses document will not be in Command Mode.

Usage: ---<CR>

Default Value: ---

Response from eS-WiFi:

Exiting CMD Mode

OK

4.4 Access Point

Used to setup the internal Access Point (Network Access). The eS-WiFi runs a Soft Access Point that allows a user to setup a connection to a local network as a STA (Client) on that network or serve up a HTML page to a user.

4.4.1 'A?' Show Access Point Settings

Returns Access Point Settings

Usage: A? <CR>

Response from eS-WiFi: >

Es-WiFi,192.168.10.1,1,0,,1,24,0

OK

Preliminary - Subject to change

Field	1	2	3	4	5	6	7
Function	SSID	IP Address	Channel	Security Type	Security Key	AP DHCP	Lease Time

Field	8
Function	Status

Default Value: None

The following commands are used to setup the Access Point. A typical application will send a sequence of commands to setup the Access point and then have the settings saved in flash memory by using the 'Z1' command:

Here is an example of setting up the Access Point information that needs to be saved into Flash upon completion:

AS=0,ABC (Mac address OFF, SSID)

Z6=192.168.10.1 (IP Address)

AC=1 (Channel 1-13 (Japan 14- select country code))

A1=2 (WPA)

A2=Password (Security Key)

AL=24 (Lease Time – Note: AP DHCP is default to ON)

Z1 (Saves setting to flash –USER SAPCE)

If the eS-WiFi module is reset, you can type 'A?'. All of the settings above have been saved: ABC,192.168.10.1,2,Password,1,24,0

To reset the device to the factory defaults, issue the following three AT commands:

Z3=0 Set Factory User Space

Z2 Erases Flash ZR Reset

4.4.2 'A0' Activate Access Point

The 'A0' AT command is a blocking command. Once it is issued, the module is expecting that someone will connect to the access point. This command starts the following functions:

- 1. Starts the Access Point
- 2. Starts a DHCP Server
- 3. Starts a DNS Server
- 4. Starts a Web Server

Usage: A0<CR>
Default Value: None

	Responses from module	Description
1	[AP] SSID: eS-WiFi_AP_0022F40BBC0F IP: 192.168.10.1 [WEB SVR] Server started >	Once the module receives the AT command 'AO'. A web server starts running. Use a web browser on your PC or phone to located the eS-WiFi access point.
2	[AP DHCP] Assigned AC:72:89:55:CE:36 has 192.168.10.100 >	Connect a PC or phone to the Access Point. Once joining the Access point with a phone, an IP address will be assigned.
3	[JOIN] SSID [DHCP] 192.168.2.18 OK >	On the web page select which network you want to join. The module will join that network as a STA (Client) on the network and shutdown the AP running on the module.
4	[AP] Shutdown OK >	To exit, send a ctrl-q (0x11) byte to host interface. The Access point and all servers will shut down and return to the prompt.

4.4.3 'A1' Set Access Point Security Mode

'A1" sets the security mode for the Access Point running on the eS-WIFI module.

Usage: A1=<Mode><CR>

WiFi Security	Wi-Fi Security Mode	Description
Open	0	No WiFi Security
Reserved	1	Not Valid
WPA	2	WiFi Protected Access
WPA2	3	WiFi Protected Access 2
WPA + WPA2	4	WiFi Protected Access and WiFi Protected Access 2

Default Value = 0 (Open)

4.4.4 'A2' Set Security Key

The Security Key can be up to 32 characters and is a unique security keyword for access to a wireless network. A system (PC, Smartphone, Tablet, etc.) must use the Security Key to associate with the eS-WiFi Access Point to communicate with the eS-WiFi Module.

Usage: A2=<Key><CR>

Default Value: None

4.4.5 'AA' Get AP DHCP Cached Address(es)

Gets the MAC and IP addresses in the AP DHCP cache

Preliminary - Subject to change

Usage: AA=<Channel><CR>

Default Value: None

4.4.6 'AC' Set Access Point Channel

Sets the channel the Access Point will broadcast on. The channels for 2.4 GHz are from 1 to 13 based upon the Country Code setting and for 5 GHz the channels are 36, 40, 44, 48 and 149, 153, 157, 161 and 165. A setting of 0 selects the auto-channel algorithm for 2.4 GHz.

Usage: AC=<Channel><CR>

Default Value: C2.5.0.X=0, C3.5.2.X=0

4.4.7 'AD' Activate Access Point Direct Connect Mode

Starts the Access Point, DHCP Server, and minimal CSO (Connection Support Only) Web Server. The CSO Web Server handles the support for connecting Apple devices with iOS6 and other devices that require addition support to connect to a captive network.

Usage: AD<CR>
Default Value: None

This mode is used to establish an IPV4 "Direct Connection" to a PC, Smartphone or IOT appliance. Once a PC, smart phone or IOT device joins the eS-WiFi module, the eS-module will issue an IP Address and create a wireless network connection between the module and the Smartphone or IOT appliance. The "Direct Connection" is an Infrastructure connection that has advantages over Adhoc. For example Android does not support Adhoc natively.

Once you have established this infrastructure connection you can setup a Peer-to-Peer connection using UDP, UDP Lite or TCP.

	Responses	DESCRIPTION
1	[AP] SSID: eS-WiFi_AP_0022F40BBC0F IP: 192.168.10.1 [WEB SVR] CSO Server started OK >	AT command 'AD' starts the access point on the eS-Wifi module and DHCP server.
2	[AP DHCP] Assigned AC:72:89:55:CE:36 has 192.168.10.100 >	Type in the AP IP address into a browser (192.168.10.1) and you have a connection between the module and phone or PC

4.4.8 'AE' Exit Access Point Direct Connect Mode

Shuts down the Access Point, DHCP Server, and Web Server when the connected using the Direct Connect mode. This is used for both the 'A0' and 'AD' commands. For the 'A0' command this is only needed when a Direct Connection has been made through the Network Access Web Page.

Usage: AE<CR>

Default Value: None

It is important to create and tear down networks properly. You should shut down the UDP, UDP Lite or TCP prior to issuing the AE command.

4.4.9 'AL' Set Access Point DHCP Lease Time

Set the lease time given by the DHCP Server when an IP address has been assigned.

Usage: AL=<Lease Time><CR>

Value	Lease Time
0	30 mins.
1-254	1-254 hrs.
255	~136 yrs.

Default Value: 0 (30 mins.)

4.4.10 'AR' Get Client RSSI (SoftAP Only, Direct Connect Mode)

Gets the Client RSSI values for all clients connected to the SoftAP in direct connect mode. i.e. 'A0' then select "Direct Connect" from the Configuration page or 'AD'

Usage: AR<CR>
Default Value: None

Please note that it may take more than one issuance of the command to return a non-zero value.

	Responses	Description
1	> AR 0,AC:72:89:55:CE:36,0 OK > AR 0,AC:72:89:55:CE:36,-40 OK >	0 is the 1 st client attached (MAX=4 clients) AC:72:89:55:CE is Mac Address -40 is the RSSI of the client

4.4.11 'AS' Set Access Point SSID

Sets the Access Point SSID. It can be up to 32 characters in total length (including MAC if enabled).

Usage: AS=<MAC Mode>, <SSID><CR>

Value	MAC Mode	
0	No MAC.	
1	Use MAC.	

Default Value: MAC Mode = 1, SSID = eS-WiFi_AP

4.4.12 'AT' Set Maximum Number of AP Clients

Sets the maximum number of AP clients that will give an IP address. Please note that the AP itself is considered one of the clients so the total number of client equals 5.

Usage: AT=<Number of Clients><CR>

Value	MAC Mode
1-4	Number of Clients

Default Value: 4

4.5 Select Communication Interface

Firmware loaded on the module determines the Host interface. UART or SPIs interfaces are supported for communication with the eS-WiFi module. A separate firmware is needed for each interface.

4.5.1 'B?' Shows Communication Interface Settings

Return current Communication Interface settings.

Usage: B?<CR>

Value	Host Interface
0	UART.
1	SPI
2	USB – HID
3	USB -VCP

Field	1	2	3	4	5	6	7
Function	Host Interface	N/A	N/A	N/A	N/A	N/A	N/A

Default Value: None

Response from eS-WiFi in UART Mode:

0 OK

4.5.2 'B2' Set SPI Mode

Set the SPI mode for phase and polarity

Usage: B2=<value><CR>

Value	Mode
0	CPOL = 0, CPHA = 0
1	CPOL = 0, CPHA = 1
2	CPOL = 1, CPHA =0
3	CPOL = 1, CPHA = 1

Default: 0

4.5.3 'B3' Set SPI Ready Pin

Sets the WKUP pin as the SDRDY signal for a design that did not implement the SDRDY pin.

Usage: B3=<value><CR>

Value	Ready Pin
0	SDRDY(ADC0) Only
1	SDRDY(ADC0) and WKUP

Default: 0

4.6 Configure Network Settings

Used to set up the network parameters needed to access a Wi-Fi network. The eS-WiFi can connect to a network using three techniques depending upon your application:

- 1. Your microcontroller can issue a series of AT commands starting with "C1" as outlined in this section
- 2. You can setup a "Direct Connection" a private network as detailed in section above.
- 3. You can start the Access Point and a web server running on the eS-WiFi module and the user will be able to connect to the Web Site, select the SSID and enter the password.

4.6.1 'C0' Join a Network

Using the user defined parameters of SSID, Password, Security Type, etc. attempt to join a WiFi network for access. A successful Join, returns SSID and IP Address; otherwise, an error message is returned. A network cannot be re-joined once the eS-WiFi module has joined a network without first closing the current network connection.

Usage: C0<CR>
Default Value: None

	Responses	
C1.3.x	[JOIN] SSID [DHCP] 192.168.2.18 OK >	/

	Responses	
2.4.0	[JOIN] SSID,192.168.2.18,0,0 OK >	

4.6.2 'C1' Set Network SSID

Network Service Set Identifier (SSID) can be up to 32 characters and is a unique identifier (network name) for a wireless network. The eS-WiFi module must use the SSID, Passphrase and WiFi Security to communicate with a wireless network. The SSID is normally supplied by a network administrator.

Usage: C1=<SSID><CR>
Default Value C1=NONE

4.6.3 'C2' Set Network Passphrase

Network Passphrase can be up to 32 (63/64 for WPA2, C2.4.0 or greater) characters and is a unique security keyword for access to a wireless network. The eS-WiFi module must use the Passphrase associated with the network SSID and the WiFi Network Security to communicate with a wireless network. The Passphrase is normally supplied by a network administrator.

Usage: C2=<Passphrase><CR>

Default Value: C2=NONE

4.6.4 'C3' Set Network Security Type

Select the WiFi Network Security to use for communication with a WiFi network. Below is a list of WiFi Security Modes. The eS-WiFi module must use one of the WiFi Security modes with the associated SSID and Passphrase to communicate with a wireless network. The WiFi Security is normally supplied by a network administrator. The Network WiFi Security Modes are listed in Table 4.2.

WiFi Security	WiFi Security Mode	Description
Open	0	No WiFi Security
WEP	1	Wired Equivalent Privacy
WPA	2	WiFi Protected Access TKIP
WPA2	3	WiFi Protected Access 2 AES
WPA + WPA2	4	WiFi Protected Access and WiFi Protected Access 2
WPA2 TKIP	5	WiFi Protected Access 2 TKIP

Table 4.2: Network WiFi Security Modes

Usage: C3=<WiFi Security Modes><CR>

Default Value: C3=0

4.6.5 'C4' Set Network DHCP

Dynamic Host Configuration Protocol (DHCP) is used to query a network for an available IP Address that would be used for communications on the network. The eS-WiFi module can use DHCP or a user defined IP Address. The eS-WiFi module must have an IP Address to communicate with a wireless network. The Network DHCP Modes are listed in Table 4.3.

DHCP	DHCP Mode
Disabled User supplied IP Address	0
Enabled Network supplied IP Address	1

Table 4.3: Network DHCP Modes

Usage: C4=<DHCP Modes><CR>

Default Value: C4=1

The following commands are used to configure the eS-WiFi to join a wireless network. Here is an example of the AT commands:

C1=Inventek (SSID)

C2=Password (Router Passphrase)

C3=2 (WPA) C4=1 (DHCP)

C0 (eS-WiFi joins the network)

CC=1 (Auto Connect On- Automatically connects on power up)

Z1 (Saves setting to flash)

In the above scenario, as soon as power is applied to the eS-WiFi the module will automatically connect to the Inventek router with the password and settings that are entered. If you want to change to another network, simply make the changes to the AT command and save the new settings into flash using the "Z1" command.

4.6.6 'C5' Set Network IP Version

Set Network IP Version is used to select between Internet Protocol Version 4 (IPV4) and Internet Protocol Version 6 (IPV6). The IP Version must be set for correct operation of the eS-WiFi module on a wireless network. The Network IP Version settings are listed in Table 4.4.

DOC-UM-20035-4.6

IP Version	IP Version Mode
IPV4	0
IPV6	1

Table 4.4: Network IP Version Modes

Usage: C5=<IP Version Modes><CR>

Default Value C5=0

4.6.7 'C6' Set Network IP Address

Set Network IP Address allows the user to define the IP Address that the eS-WiFi module will use on a wireless network. If DHCP is disabled, the IP Address must be set to allow the eS-WiFi module to work correctly on a wireless network. The IP Address must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx for the network address.

If DHCP is enabled, the IP Address will be set by the wireless network when a network is joined.

Usage: C6=<xxx.xxx.xxx.xxx.><CR>

Default Value: 000.000.000.000

4.6.8 'C7' Set Network IP Mask

Set Network IP Mask is a user defined value for the network net mask (subnetting of the network) used on the WiFi Network. If DHCP is disabled, the net mask must be set to allow the eS-WiFi module to work correctly on a wireless network. The net mask must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx.xxx.

If DHCP is enabled, the Net Mask will be set by the wireless network on a network join.

Usage: C7=<xxx.xxx.xxx.xxx><CR>
Default Value: 000.000.000.000

4.6.9 'C8' Set Network Gateway

Set Network Gateway is a user defined Gateway IP Address used by the devices on the network to access other networks or as a default gateway when no other IP Address matches any other routes in the network routing table. The Gateway IP Address must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx.

Usage: C8=<xxx.xxx.xxx.xxx><CR>

Default Value: 255.255.255.255

4.6.10 'C9' Set Network Primary DNS

Set Network Primary Domain Name System (DNS) is a user defined address used for translating human readable domain names into numerical identifiers for network devices. The Primary DNS must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx.xxx.

Usage C9=<xxx.xxx.xxx.xxx><CR>

Default Value: 255.255.255.255

4.6.11 'CA' Set Network Secondary DNS

Set Network Secondary DNS is used as a back up to the Primary DNS. The Secondary DNS must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx.xxx.

Usage: CA=<xxx.xxx.xxx.xxx><CR>

Default Value: 255.255.255.255

4.6.12 'CB' Set Network Join Retry Count

Set Network Join Retry Count is a user defined value that controls the number of times the eS-WiFi module will attempt to join a wireless network before stopping with a failure notice if the system is unable to join the network.

Input range for Join Retries is 0 to 10.

Usage: CB=<Join Retries><CR>

Default Value: 5

4.6.13 'CC' Network Auto Connect

Network Auto Connect allows the user to define weather or not the eS-WiFi module will attempt to join a wireless network after the system is powered up and operational, or after a reset. The Network Auto Connect modes are listed in Table 4.5. You must save the "CC" AT command with the Z1 command to save the setting.

Auto Connect	Auto Connect Mode
Disable Network Auto-Join and Auto Reconnect	0
Enable Network Auto-Join	1
Enable Auto-Reconnect	2
Enable Both Auto-Join and Auto Reconnect	3

Table 4.5: Network Auto Connect Modes

Usage: CC=<Auto Connect Modes><CR>

Default Value: 0

4.6.14 'CD' Disconnect from Network

To disconnect the eS-WiFi module from a wireless network, the AT Command 'CD' is used. 'CD' will shut down the network communications and clear the network IP Address, Net Mask, and Gateway Address assigned to the eS-WiFi Module.

Usage: CD<CR>

Default Value: None

4.6.15 'CE' Set Authorization Type

Set the authorization type for WEP security.

Usage: CE=<Type><CR>

Туре	IP Version Mode
0	Open
1	Shared Key

Default Value: 0 (Open)

4.6.17 'CJ' Join/Leave IGMP Group

Join or leave a IGMP group.

Usage: CJ=<Action>,<Group IP Address><CR>

Action	Join/Leave
0	Leave
1	Join

Default Value: None

4.6.19 'CN' Sets or Gets the Country Code

Set the country code for the eS-WiFi module. The country code is a two letter code representing a country which selects which channels are valid to use.

Usage: CN=<Code><CR>

CN<CR>=Gets Country Code

Please see Appendix A for the list of Country Code supported.

Default Value: 'US'

4.6.20 'CR' Get RSSI of Associated Access Point

Get the RSSI on the currently associated Access Point.

Usage: CR<CR>

Response	Description
0	No Associated AP
All other values	RSSI
	(dB)

Default Value: None

4.6.21 'CS' Connection Status

Gets the current wireless network connection status.

Usage: CS<CR>

Response	Status
0	Not Connected

M-20035-4.6

4	Connected
ı	Connected

Default Value: None

4.6.22 'CV' Get connected rate.

Usage: CV<CR> The returned number is the bit rate of the current connection (Note: This is not equivalent to the throughput capability.)

	Responses	
1	Response > CV 104 OK >	

4.6.23 'CT' Set WPS Push Button

Sets the GPIO pin to be the PBC (Push Button Configuration) for WPS (Wi-Fi Protected Setup)

 Usage:
 CT=#<CR>
 Clear setting

 CT=!<CR>
 Status

 CT=?<CR>
 Info

CT=<pin>,<mode> pin = 0-9 (GPIO0-4, ADC0-4), mode = 0=Push, 1-Set Status

4.6.24 'CW' Connect using WPS Pin or PBC

Connects to an access point using WPS (WiFi Protected Setup) Pin or PBC (Push Button Configuration) methods. Once connected the SSID, Password/Security Key, Security Type settings will be populated and then can be saved using the "Z1" command for use later. Please note when using the Pin method the pin must be set using the "Z7" command.

Usage: CW=<value><CR>

Response	Method
0	Pin
1	PBC

Default Value: None

	Responses
1	[WPS] Searching [WPS] Associated [WPS] SSID [DHCP] 192.168.2.18 OK

4.6.25 'C?' Show Network Settings

Return current Configured Network Settings.

Usage: C?<CR>

Field	1	2	3	4	5	6	7

			DOC-0101-20033	0-4.0	Useri	vianuai e5-vviFi	<u>iviodule</u>
Function	SSID	Password	Security Type	DHCP	IP Version	IP Address	Mask

Field	8	9	10	11	12	13	14
Function	Gateway	DNS1	DNS2	Retries	Auto- Connect	Authent -ication	Country Code

Field	15
Function	Status

Default Value: None

4.7 DNS Commands

4.7.1 'D0' DNS Lookup

This command performs a DNS lookup of a Domain Name to get its IPv4 address. The Domain Name is limited to 64 characters.

Usage: D0=<Domain Name><CR>

Note: The IP address will automatically be stored as the remote host IP address. (Note, reference the P3 command.)

Default Value: None

	Example
1	> D0=www.yahoo.com 98.139.183.24 OK >

4.7.2 'D1' Set mDNS State and Name

This command Enables/Disables the use of mDNS and sets the Device name. This is supported in firmware C2.4.0 or higher.

Usage: D1=<0/1>,<Device Name><CR>

Default: None

	Example
1	> D1=1,es-WiFi43362 OK
	> >

4.7.3 'D2' Set mDNS Services

This command sets up the two available services. The status will be displayed as part of the Join message (2). This is supported in C2.4.0 or higher.

Usage: D2=<Service # 0/1>,<Instance(32chars)>,<Service(32Chars)>,<Port>,<TTL>

Default: None

Example

1	> D2=0,0		
	OK		
	> C0		
	[JOIN] SSID,192.168.2.18,0,0		
	OK		
	>		

	Example	
2	> D1=1,test-1234 OK > D2=0,1,web_service,_web_servicetcp.local,80,60 OK > C0 [JOIN] istest.001,10.0.0.3,1,0 OK >	
	mDNS Listener: Listening for multicast messages on '224.0.0.251' Press CTRL + C to quit Port 80 is open on 10.0.0.3	

4.8 Scan for Network Access Points

The eS-WiFi module can scan for available networks and return detailed information about networks found without having to join a network. The information returned on the available networks includes SSID, BSSID, RSSI, Data Rate, Network Type, Security, Radio Band, and Channel. The information returned about Network Access Points can be used in joining one of the networks.

Scanning for Network Access Points is a very handy command for determining what wireless networks are in listening range of the eS-WiFi module.

4.8.1 'F0' Scan for Network Access Points

Find Networks can be used to scan for available networks and return information about the networks found.

Usage: F0<CR>

Default Value: None

	Responses
1	#001,"SSID1",08:86:3B:2B:7E:2E,-51,54.0,Infrastructure,WPA2 AES,2.4GHz,1 #002,"SSID2",C0:C1:C0:88:9F:6A,-53,54.0,Infrastructure,WPA2 AES,2.4GHz,6 #003,"SSID3",00:24:B2:B1:E9:FD,-61,54.0,Infrastructure,Open,2.4GHz,11 OK >

4.8.2 'F1' Set Scan Repeat Count

Set Repeat Count is a user defined value that controls the number of times to scan for Network Access Points.

Input range for Set Scan Repeat Count is 0 to 255.

Usage: F1=<Set Scan Repeat Count><CR>

Default Value: 0

4.8.3 'F2' Set Scan Delay

Set Scan Delay is a user defined value that sets the amount of time in milliseconds to wait between scans for Network Access Points

Input range for Set Scan Delay is 0 to 5000, which represents the delay in milliseconds.

Usage: F2=<Set Scan Delay><CR>

Default Value: 1000

4.8.4 'F3' Set Scan Channel

Set Scan Channel to scan for.

Input range (0=None) 1 to 14

Usage: F3=<Channel><CR>

Default Value: 1

4.8.5 'F4' Set Scan BSSID

Set Scan Channel BSSID to scan for.

Usage: F4=<XX.XX.XX.XX.XX.XX><CR>

Default Value: None

4.8.6 'F5' Set Scan SSID

Set Scan Channel SSID to scan for.

Input range #=Clear, <32 character SSID>

Usage: F5=<32 character SSID><CR>

Default Value: None

4.8.7 'F?' Show Scan Settings

Returns current Scan Settings.

Usage: F?<CR>

Field	1	2
Function	Repeat	Delay
	(1+Repeat)	(ms)

Default Value: None

4.10 GPIO / ADC Information

The GPIO's on the module can be configured to control LEDs, read buttons and digital inputs or outputs, etc. The output is a 3.3V CMOS level. On the evaluation board (EVB), there are switches and LED's that can be controlled as shown in the table below. The process is to configure the pins as required with the AT command 'G4' and then to read and write as required.

A couple of examples:

- 1. Issue an AT command to see if you are connected to the network. Once you know you are connected you can light an LED.
- 2. Setup GPIO2 as an A/D, connect a temperature sensor and read the value.

A user can setup and read the state of GPIO's 1-7 with the AT command. Some firmware revisions may use some of the GPIO's for special functions. For example, the SPI firmware uses the GPIO2 (ADC) for the SPI ready function.

4.10.1 'G2' Read GPIO/ADC

Reads the current value of the specified GPIO or ADC pin.

Usage: G2=<Pin Number>,<Value><CR>

Value	Туре	Description
2	Button	This indicates which pin to read and
3	Digital Input	how the GPIO is configured.
5	ADC	

Default Value: None

- 1. G4=0,2 This configures GPIO0 as a button with de-bounce features enabled.
- 2. G2=0.2 = This function reads GPIO0 and reports the value.

4.10.2 'G3' Write GPIO

Writes the current value of the specified GPIO pin.

Usage: G3=<Pin Number>,<Type Value>,<Value><CR>

Type Value	Туре
1 /	LED
4	Digital Output

Value	Output
0	Low
1	High

Default Value: None

4.10.3 'G4' GPIO Setup

Sets the type of the specified GPIO pin.

Usage: G4=<Pin Number>,<Value><CR>

Value	Туре	Firmware Loaded
1	LED	UART Firmware : GPIO0-GPIO4 and
2	Button	ADC0-ADC4 can be configured using
3	Digital Input	the "G4" command
4	Digital Output	

DOC-UM-20035-4.6

User Manual eS-WiFi Module

5	ADC	SPI Firmware: GPIO0-GPIO4 can be
		used. ADC0-ADC4 are used by the SPI
		interface

Default Value: None

4.10.4 'GT' Get UTC Time

Gets the UTC time from the internet (Item 1 below). If not connected to the internet, it will give the number of milliseconds since power-up. (Item 2 below)

Usage: GT<CR>

	Responses	
1	> GT 1500404323 OK >	
2	> GT 4 OK >	

4.10.5 'G?' Show GPIO Settings

The AT Command 'G?' will return the GPIO pin type. To confirm the settings, the sequence of returned states from this request will be grouped by type, not by pin number.

Usage: G?<CR>

Pin Number	0	1	2	3	4	5	6	7	8	9	10	11	12
Function	GPIO0	GPIO1	GPIO2	GPIO3	GPIO4	ADC0	ADC1	ADC2	ADC3	ADC4	CFG1	CFG2	Wakeup
Default	DIN	DIN	DIN	DIN	DIN	ADC	ADC	ADC	ADC	ADC	DIN	DIN	DIN
COMMENTS						USED FOR SPI	USED FOR SPI	USED FOR SPI	USED FOR SPI	USED FOR SPI	NFC only	NFC only	
Inventek EVB	SW1	SW2		RED LED	Green LED	Temp sensor							_

Default Value: As shown above

4.11 Software and Configuration Information

Information about the AT Command application that includes Firmware Version, WICEDTM Version, IP Stack Version, RTOS Version and configuration can be accessed using the following AT Commands.

4.11.1 'IC' Is Endpoint Configured

The AT Command 'IC' will return is an endpoint has been configured by the CloudBourne Application.

Usage: IC=<unique portion of the endpoint, up to 64 characters><CR>

Default Value: None

Value	Output
0	Failed
1	Configured

4.11.2 '1?' Show Applications Information

The AT Command '1?' will return Application, Firmware, Platform, IP Stack, and RTOS information.

Usage: I?<CR>

Field	1	2	3	4	5	6	7
Function	Product ID	FW Revision	API Revision	Stack Revision	RTOS Revision	CPU Clock	Product Name

Default Value: None

4.12 Miscellaneous Commands

4.12.1 'MF' Test External Serial Flash

Does an erase, write, read, and verify test on the external serial flash used for Factory Reset or Over-The-Air (OTA) firmware updates.

Usage: MF<CR>

Value	Output
0	Failed
1	Passed

Default Value: None

4.12.2 'MJ' Manufacturing Test

The MJ command does an AP Connect, checks RSSI, and pings the gateway address. The default RSSI limit is -90. The default SSID is set to ism_mfg_test, security is set to open, and the password is none.

Usage: MJ<CR>

MJ=<RSSI Limit><CR>

MJ=-70 <cr></cr>	
Value	Output
0	Failed
1	Passed

4.12.3 'MR' Message Read (SPI Only)

This command reads any asynchronous message that occurs based on an asynchronous event such as a device connecting to the Soft AP(Access Point) using A0 and AD commands or a TCP connection message from the P5 command. The message will have a Start Of Message Asynchronous [SOMA] and End Of Message Asynchronous [EOMA] delimiters.

	Responses
1	[SOMA][AP DHCP] Assigned AC:72:89:55:CE:36 has 192.168.10.100[EOMA] OK >
2	[SOMA][TCP SVR] Accepted 192.168.2.2:5024[EOMA] OK >

4.12.4 'MS' Suppress Async Message DHCP

Suppresses the DHCP assigned messages from being sent to the host.

Usage: MS=<Disable/Supress><CR>

Value	Output
0	Disabled
1	Suppress

Default Value: 0

4.12.5 'MT' Set Message Type

Set the message type. $\textbf{Normal: full messages including usage on error or \textbf{Simple:} No usage on error.}$

Usage: MS=<Disable/Simple><CR>

Value	Output
0	Disabled
1	Simple

Default Value: 0

	Example	
1	> MT	
	ERROR: Unknown Error Usage: MT <0=Normal/1=Simple> > MT=1	
	OK > MT	
	ERROR >	

4.13 Transport Communication

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are used for point-to-point or port-to-port communications on a network. TCP is a guaranteed port-to-port communication protocol that is used to insure data is transferred error free between a server and client. UDP is considerd to be faster than TCP for the movement of data over a network; however, UDP does not guarantee the delivery of data between a server and a client. UDP lite is UDP with the partial removal of checksums which may improve network data movement performance but may be more prone to data errors.

The eS-WiFi module supports TCP, UDP, and UDP lite for port-to-port communication.

The eS-WiFi module can be configured as a server or client on a network for TCP/UDP communication. In Transport server mode, the eS-WiFi module will wait in the background for connection requests. Once a network device requests a connection to the server, the server will enter a mode were data can be requested by a client and data delivered to a client.

The eS-WiFi module can also be configured as a client for TCP/UDP communications to make requests to a Transport server on the wireless network.

If UDP or UDP lite is used, it is recommended that the user develop their own packet numbering and error checking for data transfers.

4.13.1 'P0' Set/Display Communication Socket

Set/Display the communication socket for TCP, UDP, or UDP Lite communications. All the Px commands for communications are duplicated for each socket. The Rx and Sx are tied to the communication socket selected by 'P0'.

Usage Set: P0=<Communication Socket 0 to 3><CR>

Usage Display: P0<CR>

	Responses	
1	> P0=1	/
	OK >	
2	> P0 1 OK >	

```
//Set Socket 1
Example:
                 P0=1<CR>
                          P1=0<CR>
                                                     //TCP
                          P3=192.168.2.2<CR>
                                                     //Remote Host
                                                     //Remote Port
                          P4=8002<CR>
                          P6=1<CR>
                                                     //Start Client connection
                          S3=4<CR>1234
                                            //Send Data
                          R0<CR>
                                            //Receive Data
                          P0=2<CR>
                                                     //Set Socket 2
                                                     //TCP
                          P1=0<CR>
                          P3=192.168.2.3<CR>
                                                     //Remote Host
                          P4=8002<CR>
                                                     //Remote Port
                          P6=1<CR>
                                                     //Start Client connection
                          S3=4<CR>4321
                                            //Send Data
                          R0<CR>
                                            //Receive Data
                           P0=1<CR>
                                                     //Set Socket 1
```


4.13.2 'P1' Set Transport Protocol

Set Transport Protocol allows the user to enable selection of ether TCP, UDP, UDP Lite, TCP-SSL for network port-to-port communications. For Firmware Version C3.5.2.X or greater, MQTT is available and is selected with this command. The Transport Protocols modes are listed in Table 4.6.

Transport Protocol	Transport Protocol Mode
TCP Enabled	0
UDP Enabled	1
UDP Lite Enabled	2
TCP-SSL	3
MQTT	4

Table 4.6: Transport Protocol Modes

Usage: P1=<Transport Protocol Modes><CR>

Default Value: P1=0

4.13.3 'P2' Set Transport Local Port Number

Set Transport Local Port Number allows the user to define the local port that the eS-WiFi module will listen on for Transport communication connections.

Input range for Transport Local Port Number is 0 to 65535.

Usage: P2=<Transport Local Port Number><CR>

Default Value: P2=5024

Refer to documentation on TCP/UDP communications for pre-defined port information.

4.13.4 'P3' Set Transport Remote Host Port IP Address

Set Transport Remote Host IP Address is a user defined address that the eS-WiFi module will use to contact a Transport server on the network. The Transport Remote Host IP Address must be entered in dotted-decimal notation, which is defined as xxx.xxx.xxx for the network address.

Usage: P3=<xxx.xxx.xxx.xxx><CR>

Default Value: 000.000.000.000

4.13.5 'P4' Set Transport Remote Port Number

Set Transport Remote Port Number allows the user to define the port number for a Transport Server on the network that the eS-WiFi module will use for communications with that server.

Input range for Local Port is 0 to 65535.

Usage: P4=<Local Port><CR>

Default Value: P4=5025

4.13.6 'P5' Stop/Start Transport Server

Stop/Start Transport Server is used to stop or start the eS-WiFi module's Transport Server mode. The AT Command 'P1' is used to select between TCP, UDP or UDP Lite server protocols. The Transport Server modes are listed in Table 4.7.

Transport Server	Transport Server Mode
Server Disable	0
Server Enable	1
Multi-Accept Server - Close Socket	10
Multi-Accept Server - Enable	11

Figure 4.7: Transport Server Modes

Usage: P5=<Transport Server Modes><CR>

Default Value: P5=0

4.13.7 'P6' Stop/Start Transport Client

Stop/Start Transport Client is used to stop or start the eS-WiFi module's Transport Client mode. The AT Command 'P1' is used to select between TCP, UDP or UDP Lite server protocols. The Transport Server modes are listed in Table 4.8.

Transport Client	Transport Client Mode
Client Disable	0
Client Enable	1

Figure 4.8: Transport Server Mode

Usage: P6=<Transport Client Modes><CR>

Default Value: P6=0

4.13.8 'P7' Start/Stop Request TCP Loop

Controls the Request TCP Loop. Closing socket allows the next listen backlog to be handled.

Usage: P7=<Value><CR>

Value	Loop	
	Function	
0	Stop	
1	Start	
2	Close Socket	
3	Get Next Connection	

Default Value: P7=0

4.13.9 'P8' Set Listen Backlogs

Set the number of listen backlogs (TCP connection requests) that can be queued.

Usage: P8=<value><CR>

Range: 1 to 6 backlogs

Default Value: P8=1

4.13.10 'P9' SSL Certification Verification Level

This command sets the verification level for the server/client certificate

Usage: P9=<Level><CR>

Level: 0 = None, 1 = Optional(Root CA only), 2 = Required(Root CA/Certificate/KEY)

4.13.11 'PA' Set Custom Certificate Authority

Set a custom certificate authority name for simple verification of the SSL certificate

Usage: PA=<index 0/1><Custom CA, 63 characters max><CR>

Default Value: None

4.13.12 'PB' Set Root CA Verification Results

Set the TCP API message timeout to the stack.

Usage: PB=<value><CR>

Value	TCP Keep-Alive
0	Terminate SSL Connection, Error Message
1	Error Message, Don't terminate SSL Connection

Default Value: 0

4.13.13 'PC' Write Security Certificates

Writes a security certificate to flash.

Usage: PC=<Certificate 0/1>,<Number of Bytes>\r<Byte of certificate><CR>

Default Value: None

4.13.14 'PD' Write Security Key

Writes a security keys to flash.

Usage: PD=<Key 0/1>,<Number of Bytes>\r<Byte of key><CR>

Default Value: None

Writes a security keys to flash.

Usage: PD=<Key 0/1>,<Number of Bytes>\r<Byte of key><CR>

Default Value: None

4.13.15 'PE' Certificate Set Availability

Usage: PE\r

output: <Set 0, 0-used/1-available>,<Set 1, 0-used/1-available>,<Set 2, 0-used/1-available>

Note: Used will be reported if any one feature of the set is used.

format: PE=<certificate set 0/1/2>\r

output: <CA, 0-used/1-available>,<Cert, 0-used/1-available>,<Key, 0-used/1-available>

4.13.16 'PF' Set Active Certificate

Usage: PF= <function>,<Certificate set>\r

Function: 0= TLS, 1= AWS Certificate" 0-2

Default Value: TLS=0, AWS=2

4.13.17 'PG' Program CA, Certificate or key

Format: PG=<certificate>,<Type>,<Len>\r <data bytes>

Certificate Set: 0-2

Type: 0=CA, 1=Certificate, 2= Key

Len: Length of CA, Certificate, or Key in bytes

Data Bytes CA, Certificate, or Key bytes

Note for C3.5.2.1.BETA4 or above:

If you write the same CA, Certificate, or Key to the same location that the same

CA, Certificate, or Key was written prior it will perform a verify.

Output: Match or an error.

4.13.18 'PK' TCP Keep-Alive

Enables/Disables and sets the TCP Keep-Alive Time-to-Idle. This is useful in detecting broken TCP connections. If enabled and a TCP connection is broken, the S0/S3 commands will respond with a -1 once the broken connection is detected.

Usage: PK=<value1>,<value2><CR>

Value1	TCP Keep-Alive
0	Disable
1	Enable

Value2 Range: 250ms to 7200000ms (default is 7200000ms)

4.13.19 'PM' MQTT Attributes

format: PM\r

output: <publish topic>,<subscribe topic 0>,<subscribe topic 1>,<subscribe topic 2>,<MQTT mode>,<user

name>,<password>,<client id>,<keepalive>

Note: if not set the field will be blank (i.e., nothing between commas)

PM=0 - Set Publish Topic

format: PM=0,<publish topic>\r

publish topic: 64 alphanumeric characters

PM=1 - Set Subscribe Topic

format: PM=1,<subscribe topic>\r

subscribe topic: Note: Only set index 0

subscribe topic:

64 alphanumeric characters

PM=1,<index>,<subscribe topic>\r

index, coabourbe topics in

0-2, 0 same as original format above

64 alphanumeric characters

PM=2 - Set MQTT Security Mode format: PM=2,<security mode>\r

security mode: 0=None 1=User Name/Password, 2=CA/Cert/Key

PM=3 - Set User Name

format: PM=3,<user name>\r

user name: 32 alphanumeric characters

PM=4 - Set User Name

format: PM=4,<password>\r

password: 32 alphanumeric characters

PM=5 - Set MQTT Client ID

format: PM=5,<client id>\r

client_id 24 alphanumeric characters

PM=6 - Set MQTT Keep Alive

format: PM=6,<keepalive>\r

keepalive 0-65535 seconds

PM command Clear Attribute format: PM=<command>,"\r

command: 0,1,3,4,5,6

format: PM=<command>,<index>,"\r

command: 1 (when using multiple subscribe topics)

4.13.20 'PY' Set TCP API Message Timeout

Set the TCP API message timeout to the stack.

Usage: PY=<Timeout in ms><CR>

Range: #=Restore Default, 0-65535, ?-Info

Default Value: 10000

4.13.21 'PX' Set TCP Streaming Mode

Set the TCP to automatically stream data as a Client or a server.

Usage: PX=0{0=Server Mode;1=Client Mode},GPIO

Examples

Usage: PX=<1,0><CR> (Client Mode with GPIO 0 as escape) or Usage: PX=<0,0><CR> (Server Mode with GPIO 0 as the escape)

Streaming Mode allows raw, un-formatted data to be sent to and from the module over Wi-Fi via the serial port. Data shows up on the UART and automatically streams wirelessly as either a client or a server. Perform the initial AT command setup to define the mode and anything that shows up on the UART is automatically sent.

Here is a simple Client setup procedure:

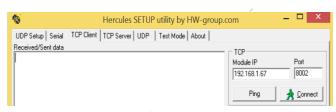
Plug the eS-Wifi module into the PC and start a terminal program (e.g. Teraterm) and set default baud rate to 115,200 to communicate with the module. Also, open Hercules as a server connected to the same network.

- 1. Join the eS-WiFi module to a network using AT commands
 - C1= SSID \r
 - C2= Password \r
 - C3= 0 \r
 - C0 \r
- 2. P0=0\r
- 3. P3=192.168.1.xx\r
- 4. P4=8002
- 5. S1=7
- 6. S2=1000
- 7. PX = 1.0

"Client must initiate first"

Type away and data streams anything that shows up on the UART.

Server Setup: Add the following command for Server Mode:


P2=8002 LOCAL PORT

PX=0,0 Server Mode PX=0{0=Server Mode;1=Client Mode},GPIO

4.13.22 'P?' Show Transport Settings

Return current Transport Communication Settings.

Usage: P?<CR>

Field	1	2	3	4	5	6	7
Function	Protocol	Client	Local	Host	Remote	TCP	UDP
	/	IP	Port	IP	Port	Server	Server

Field	8	9	10
Function	TCP	Accept	Read
	Backlogs	Loop	Mode

Default Value: None

4.14 Receive Transport Data

Once the Transport Protocol has been defined and either the server or client mode has been enabled, data can be received from a connected server or client using the AT Command 'R0' with AT Command 'R1' setting the size of data to read from the transport protocol stack. For TCP data, multiple reads may be needed to return all of the available data; however, for UDP, data received greater than the number of bytes defined by the AT Command 'R1' will be lost.

4.14.1 'R0' Read Transport Data

Available receive data is read using the AT Command 'R0'. 'R0' reads the transport buffer for AT Command 'R1' size bytes. Multiple reads may be needed to read all of the available TCP data. UDP data received greater than the bytes size defined by R1 will be lost.

Usage: R0<CR>

Default Value: None

Responses	
Data sent will be received.	
Blank Response ("\r\n\r\nOK\r\n> ") No data received.	
Response="-1"	
A management of the fellowing property will accept a " 4" property.	

Any one of the following reasons will cause a "-1" response:

- 1. Connection to the network (AP) has been lost
- 2. Other side has closed the connection
- 3. Other side has lost it connection to the network

4.14.2 'R1' Set Read Transport Packet Size (bytes)

The AT Command 'R1' is a user defined value for the packet size of data to be returned. The AT Command 'R1' should be set before performing AT Command 'R0'. The input range for AT Command 'R1' is 0 to 1460 bytes.

Usage: R1=<Data Packet Size><CR>

Default Value: R1=1460

4.14.3 'R2' Set Read Transport Timeout (ms)

The AT Command 'R2' is a user defined value for the amount of time in milliseconds to wait on the Read Transport Data AT Command 'R2' to finish. The input range for R2 is 0 to 30000 milliseconds.

Usage: R2=<Read Transport Timeout><CR>

Default Value: R1=5000

4.14.4 'R3' Set Receive Mode

The AT Command R3 sets the receive mode. In receive mode = 1 the CRLF(Carriage Return/ Line Feed) delineation are removed from the Read response.

Usage: R3=<Value><CR>

Value	Receive Mode
0	Normal
1	No Delineation

Default Value: None

4.14.5 'R?' Show Read Transport Settings

Return current Receive Transport Data Settings.

Usage: R?<CR>

DOC-UM-20035-4.6

User Manual eS-WiFi Module

Field	1	2	3
Function	Number of	Timeout	Receive
	Bytes		Mode

Default Value: None

4.15 Write Transport Data

Once the Transport Protocol has been defined and either the server or client mode has been enabled, data can be written to a connected Transport Server or Client using the AT Command 'S0' with AT Command 'S1' defining the size of data to write.

4.15.1 'S0' Write Transport Data

The AT Command 'S0' is used to write data to a Transport Server or Client. The size of the data to write is defined via the AT Command 'S1'. After the AT Command 'S0' is entered, any data writing to the eS-WiFi module's selected communicating interface will be sent to a connected Transport Server or Client. Once the number bytes defined by AT Command 'S1' have been sent, the eS-WiFi module will return back to the AT Command mode waiting for the next 'AT Command'. If more bytes are written to the eS-WiFi module than are defined by the AT Command 'S1', the data will be lost and error message will be returned on the excess data written to the eS-WiFi module selected communication interface.

Usage: S0<CR><Data>

4.15.2 'S1' Set Write Transport Packet Size (bytes)

AT Command 'S1' is used to define the packet size of data to write to a connected Transport Server or Client. The AT Command 'S1' should be set before a performing AT Command 'S0'. We recommend you use the S3 function for most applications since it combines the 'S0' and 'S1' commands.

Usage: S1=<Data Packet Size><CR>

Default Value: S1=1460

4.15.3 'S2' Set Write Transport Timeout (ms)

The AT Command 'S2' is a user defined value for the amount of time in milliseconds to wait on the Write Transport Data AT Command 'R2' to finish. The input range for S2 is 0 to 30000 milliseconds.

Usage: S2=<Write Transport Timeout><CR>

Default Value: S1=5000

4.15.4 'S3' Write Transport Data

The AT Command 'S3' is used to write data to a Transport Server or Client. The size of the data to write is defined by the first parameter. After the AT Command 'S3' is entered (i.e. the <CR> is received by the eS-WiFi module, any data writing to the eS-WiFi module's selected communicating interface will be sent to a connected Transport Server or Client. Once the number bytes defined by the first parameter have been sent, the eS-WiFi module will return back to the AT Command mode waiting for the next 'AT Command'. If more bytes are written to the eS-WiFi module than are defined by first parameter, the data will be lost and error message will be returned on the excess data written to the eS-WiFi module selected communication interface.

Usage: S3=<Data Packet Size<CR><Data>

4.15.5 'SF' SPI Flash CS Pin

The AT Command 'SF' is used to set the CS (Chip Select) pin for the Serial SPI Flash for OTA.

Usage: SF=<pin><CR>

Pin = 0 (SSN pin), 1-5 (GPIO0-4)

Default Value: 0

4.15.6 'S?' Show Write Transport Settings

Return current Write Transport Data Settings.

Usage: S?<CR>

Field	1	2	
Function	Number of Bytes	Timeout	

Default Value: None

4.16 Ping IP Target Address

Ping is a network utility for testing the reachability of hosts on a network. Ping will measure the round-trip time to a host or return a timeout if the host is not reachable.

4.16.1 'T0' Ping IP Target Address

The AT Command 'T0' will Ping a remote host returning the round-trip time or a timeout message. The host IP Address used by Ping must be set up by using the AT Command 'T1'.

Usage: T0<CR>

Default Value: None

4.16.2 'T1' Set Ping Target Address

The AT Command 'T1' is used to set the IP Address of the host to Ping.

Usage T1=<xxx.xxx.xxx.xxx><CR>

Default Value: 000.000.000.000

4.16.3 'T2' Set Ping Repeat Count

The AT Command 'T2' is used to define the number of times to repeat a Ping of a host on the network.

Usage T2=<Repeats><CR>

Range: 0-65534, 65535=Continuous

Default Value: T2=0

4.16.4 'T3' Set Ping Delay (ms)

The AT Command 'T3' is used to define the amount of time to wait between Pinging a host on the network. The amount of time to wait is defined in milliseconds and is limited to the range of 0 to 5000.

Usage T3=<delay in ms><CR>

Default Value: T3=0

4.16.5 'T?' Show Ping Settings

Return current Ping Settings.

Usage: T?<CR>

Field	1	2	3
Function	Target IP Address	Repeats (1+Repeats)	Delay

Default Value: None

4.17 Configure UART

The eS-WiFi module can be configured to use its serial interface for communications with a host computer or terminal console programs. Currently, the only UART Configuration mode for the eS-WiFi module is the serial interface, which is set to 8 data bits, no parity, one stop bits. The eS-WiFi module can support baud rates from 1200 to 3916800 baud. The AT Command 'U2' is used to set the baud rate. The eS-WiFi module interface can also be set up in ASCII or Binary mode for data. In addition, the eS-WiFi module can be configured to generate timeout messages on the serial communications.

4.17.1 'U0' Activate UART Settings

The AT Command 'U0' is used to store the current eS-WiFi module UART settings in non-volatile memory for power on or after a reset for automatic configuration of the UART.

Usage: U0<CR>

Default Value: None

4.17.2 'U2' Set UART Baud Rate

The AT Command 'U2' is used to set the baud rate for the Comm Port selected using the AT Command 'U1'. Table 4.10 list the available eS-WiFi module baud rates.

Basic Baud Rates
1200
2400
4800
9600
19200
38400
57600
115200
230400
460800
921600
1152000
1382400
1612800
1843200
2073600
2304000
2764800
3686400
3916800

Table 4.10: Basic Baud Rates

Usage: U2=<Baud Rate><CR>

Default Value: U2=115200

4.17.3 'U?' Show UART Setting

Return current UART Configuration.

Usage: U?<CR>

Field	1	2	3	4	5	6	
Function	Port	Baud	Data	Parity	Stop	Mode	
		Rate	Width		Bit(s)		

Default Value: None

4.18 WLAN

4.18.1 'WL' Set GPIOs for Link Status and Activity

Sets the GPIO pins for WLAN link status and activity. The link status can also be used as an IRQ to the host processor to indicate if the module is connected to a wireless network.

Usage: WL=<Arg1><Activity GPIO, 0-9>,<Polarity 0=Active Low/1=Active High><CR>

Arg1:

- # to clear(reset) GPIO pin to original settings
- ? to show current values
- Link GPIO, 0-9

Examples:

> WL=#

OK

> WL=4,3,1

OK

> WL=?

4,3,1

OK

Note: GPIOs 0-4 are GPIO0-4 and GPIOs 5-9 are ADC0-4.

Default Value: Link = 255, Activity=255

Link	Link	
Activity	Status	State
Off	Off	No connection
Off	On	Connected
On	Off	Connection lost
Flashing	Off	WPS In-progress
Flashing	On	Connected with link activity

4.19 System Information Flash

The AT Commands can be saved into flash to initialize the system, such as customer Mac address, or the auto connect to join a network once the SSID and password have been saved into "User Space".

The flash memory is architected to have two banks of flash, partitioned as:

- 1. Factory Default Space
- 2. Customer User Space

We recommend that all default settings are saved in "User Space" and if there are any errors encountered with the settings while in operation a switch can be made to the "Factory space" before executing a reset. This will erase the flash in the "User Space", restart the module in a known state using the default settings in the "Factory Space".

4.19.1 'Z0' Reset To Factory Defaults

Reset the current user space settings to factory default. The settings are not saved until a 'Z1' command is issued. You cannot be connected to a Network when trying to reset eS-WiFi to defaults.

Usage: Z0<CR>
Default Value: None

4.19.2 'Z1' Save Current Settings

Saves the current user setting to the space selected with the 'Z3' command.

Usage: Z1<CR>
Default Value: None

4.19.3 'Z2' Clear Saved Settings

Clears the save settings space based upon the space selected with the 'Z3' command.

Usage: Z2<CR>
Default Value: None

	Responses
1	<pre>[EEPROM] Erasing [EEPROM] Complete OK ></pre>
2	[EEPROM] Erasing user sections [EEPROM] Complete OK >

4.19.4 'Z3' Set (Select) Factory/User Space

Selects the space that will be used by the 'Z1' and 'Z2' commands.

Usage: Z3=<Value><CR>

Value	Space
0	Factory
1	User

Default Value: None

4.19.5 'Z4' Set MAC Address

Sets the MAC address.

Usage: Z4=<XX:XX:XX:XX:XX:XX><CR>

Default Value: None

4.19.6 'Z5' Get MAC Address

Gets the MAC address.

Usage: Z5<CR>

Default Value: None

4.19.7 'Z6' Set Access Point IP Address

Sets the Access Point IP address.

Usage: Z6=<XXX.XXX.XXX.XXX><CR>

Default value: 192.168.10.1

4.19.8 'Z7' Set WPS Pin

Sets the 8 digit numeric WPS (WiFi Protected Setup) pin number.

Usage: Z7=<XXXXXXXXX><CR>

Default Value: None

4.19.9 'Z8' Get WPS Pin

Gets the WPS (WiFi Protected Setup) pin number.

Usage: Z8<CR>

Default Value: 12345678

4.19.11 'ZC' Clear Factory Lock Switch

Clears the Factory Lock switch, allowing the factory flash space to be changed.

Usage: ZC=0<CR>

Default Value: None

4.19.12 'ZD' Flash Dump

Dumps the selected space from the 'Z3' command to the host interface.

Usage: ZD<CR>
Default Vale: None

	Responses
1	FLASH Dump: 0000 7F 00 00 04 73 73 69 64 FF

4.19.13 'ZF' Set Factory Lock Switch

Sets the Factory Lock switch, making the Factory space unchangeable.

Usage: ZF=1<CR>

Default Value: 0 (Unlocked)

4.19.14 'ZN' Set Product Name

Sets the Product Name reported by the Access Point web pages, the 'I?' and 'Z?' commands. The name can be up to 32 alphanumeric characters long.

Usage: ZN=<Product Name><CR>

Default Value: Inventek Systems eS-WiFi

4.19.15 'ZO' OTA Firmware Update

Get the URL for the update firmware, downloads to external serial flash and then updates the micro-processors on board flash and re-boots.

Usage: ZO=<1 - 128><CR><URL Bytes(http://domain:port/bin_file_path)>

Default Value: None

4.19.16 'ZP' Power Management

Enable/Disable Power Management features.

Usage: ZP=<Feature>, <Value><CR>

Feature	Value	Description
0	None	Wi-Fi On, All Power Save Off
1	0	Power Save Off
1	1	Power Save On
2	1-60	Beacon Interval (sec)
3	0	WiFi Radio Off
3	1	WiFi Radio On
4	None	Reset WiFi Radio
5	None	Stop Mode
6	0-3600000	Sleep in ms

Default Value: Feature 0 (WiFi On, All Power Save Off)

4.19.17 'ZR' Reset Module

Software reset of the module. The equivalent of using the RTSN pin.

Usage: ZR<CR>

Default Value: None

4.19.18 'ZS' Get Serial Number

This command gets the serial number of the module

Usage: ZS<CR>

> ZS

0029001F-33334707-30353834

OK

>

4.19.19 'ZT' Set Serial Number

This command sets the module serial number

Usage: ZT=<serial number>

serial number = 16 characters

> ZT=3333470730353835

OK

4.19.20 'ZU' Firmware Upgrade (M3G and M4G Only, uses STM32F205/405 boot loader)

Starts the STM32F205/405 built in boot loader to upgrade the firmware.

Usage: ZU<CR>
Default Value: None

4.19.21 'ZV' Set OTA Method

Selects the method for the OTA download.

Usage: ZV=<Value><CR>

Value	Space
0	Internet Server
1	Reserved

Default Value: None

4.19.22 'Z?' Show System Settings

Returns current system settings.

Usage: Z?<CR>

Field	1	2	3	4	5	6	7	
Function	Config-	WPS	Reserved	MAC	AP IP	PS	Radio	
	ration	Pin			Address	Mode	Mode	

Field	8	9	10
Function	Current	Previous	Product
	Beacon	Beacon	Name

Default Value: None

5 Example eS-WiFi Module AT Command Usage

This section of the eS-WiFi Module User's Manual covers example usage of the AT Command Set. Areas covered include Changing the Baud Rate, Scanning for Access Points, Joining Networks and transferring data via Transmission Control Protocol using TCP and UDP.

5.1 Entering Human Readable Command Mode

The eS-WiFi Module supports a Human Readable Command Mode for console interaction with the AT-Command set. For the AT Command usage examples that follow, the Human Readable Command Mode will be used. Sending the AT Command '\$\\$\\$' at the console prompt will put the eS-WiFi Module into human readable mode. Sending the AT Command '---' will take the eS-WiFi Module out of Human Readable mode and back into Machine Readable Mode, which is the default console mode for the eS-WiFi Module.

Entering Human Readable Mode example:

```
>$$$
Entering CMD mode ---
OK
```

5.2 Changing the Baud Rate

One of the first things that may be useful when using the eS-WiFi Module is to up the data rate of the eS-WiFi Module serial interface for faster interaction with the console and data transfer.

Check Current Baud Rate:

```
>U?
Communication Port:
                           UART
         Baud Rate:
                           115200
                           8 bit
        Data Width:
            Parity:
                           NONE
         Stop Bits:
                           ASCII
               Mode:
        RX Timeout:
                           0 ms
                           0 ms
        TX Timeout:
OK
```

Set New Baud:

```
>U2=921600
OK
>
```

Activate Baud Change:

>U0

At this point the eS-WiFi Module will expect a faster or slower baud rate depending on the baud rate used for U2. The next step is to change the baud rate of the system to continue communicating with the eS-WiFI Module. After changing the System baud, sending a <CR> should return the console prompt '>', If not reset the eS-WiFi Module and retry changing the baud.

Check Baud Rate After Change:

```
>U?
Communication Port: UART
Baud Rate: 921600
Data Width: 8 bit
Parity: NONE
Stop Bits: 1
Mode: ASCII
RX Timeout: 0 ms
TX Timeout: 0 ms
```


OK

Finding Access Points

The first steps in joining a network is determining available Access Points in the listening range of the eS-WiFi Module. The eS-WiFi Module AT Command Set supports functions for finding Access Points. The AT Command for finding Access Points can be used without joining a network.

5.3 Find Access Points:

```
Waiting for scan results...
#001 SŠID
                     mars
                      CC:33:CC:99:39:00
     BSSID
     RSSI
                      -39dBm
     Max Data Rate:
                     54.0 Mbits/s
     Network Type
                     Infrastructure
     Security
                      WPA2 AES
     Radio Bánd
                      2.4GHz
     Channel
#002 SSID
                      jupiter
     BSSID
                      EE:99:FF:AA:DD:00
                      -90dBm
     RSSI
                     54.0 Mbits/s
     Max Data Rate
     Network Type
                     Infrastructure
                      WPA2 AES
     Security
     Radio Band
                      2.4GHz
     Channel
#003 SSID
                     saturn FF:11:00:55:CC:EE
     BSSID
                      -90dBm
     RSSI
                     54.0 Mbits/s
     Max Data Rate:
     Network Type
                     Infrastructure
     Security
                      WFP
                     2.4GHz
     Radio Band
                      6
     Channel
#004 SSID
                      uranus
                      33:44:99:44:11:CC
     BSSID
     RSSI
                      -94dBm
     Max Data Rate
                      54.0 Mbits/s
     Network Type
                     Infrastructure
     Security
                     WPA2 AES
     Radio Band
                      2.4GHz
     Channel
                     11
End of scan results
OK
```

If needed, the eS-WiFi Module can be set up to scan a number of times for Access Points. This mode can be helpful during set up or debug on a network. The example below sets up the eS-WiFi Module to run 5 Access Point scans.

The eS-WiFi Module can also be set up using an AT Command to delay between scans. The delay is set in milliseconds. The time range for delay is 0 to 5000 milliseconds.

Delay one second between scans:

```
> F2=1000
OK
>
```

Check current Find settings:

```
> F?
Scan Repeats: 10
Scan Delay in ms: 1000
OK
```

5.4 Join Network Access Point

To join a Network Access Point, the SSID, the PASSWORD, the Security Mode, and the IP Address mode (DHCP or locally assigned IP Address) must be set. See your network administrator for information needed to accessing Access Points on your network.

Using the information returned from previous network scan (F0) and network information supplied by the Network Administrator, the eS-WiFi module can be configured to join an Access Point on the Network.

The following example shows how to join an Access Point using DHCP, however, a locally defined IP Address can also be used. Refer to the sections 4.6.4, 4.6.6, and 4.6.7 on setting a local IP Address for the eS-WiFi module.

Set SSID for Access Point:

```
> C1=mars

ok
>
```

Set Password for Access Point:

```
> C2=PASSWORD
OK
>
```

Set Security Mode (WPA2 AES) for Access Point:

```
> C3=3
OK
>
```

Set eS-WiFi Module IP Address via DHCP:

```
> C4=1
OK
>
```

Check Network Join settings before joining Access Point:

```
> C?

SSID: mars
PSWD: PASSWORD
SECURITY: WPA2 AES
DHCP: Enabled
```



```
TP.
                   TPV4
                  0.0.0.0
        ADDR:
         MASK:
                  0.0.0.0
     GW ADDR:
                  0.0.0.0
         DNS1:
                  0.0.0.0
         DNS2:
                  0.0.0.0
Join Retries:
Auto Connect:
                  n
                  Not Connected
      Status:
OK
```

Join Network Access Point mars, using PASSWORD, WPA2 AES, and DHCP:

```
> C0
Joining : mars
Successfully joined : mars
Obtaining IP address via DHCP
Network ready IP: 192.168.1.117
OK
```

Check Network Join Settings after joining Access Point:

```
> C?
         SSID:
                    mars
         PSWD:
                    PASSWORD
     SECURITY:
                    WPA2 AES
         DHCP:
                    Enabled |
           IP:
                    192.168.1.117
255.255.255.0
      IP ADDR:
         MASK:
         ADDR:
                    192.168.1.1
                    0.0.0.0
         DNS1:
                    0.0.0.0
         DNS2:
Join Retries:
Auto Connect:
                    Connected
       Status:
OK
```

Turn on auto connect

"CC"

Save settings in Flash above:

"Z1"

5.5 Ping a System on a Network

From time to time there is a need to Ping a system on a network or Ping a system while debugging a connection on the network. The eS-WiFi module can be configured to Ping systems on a network. To Ping a system on a network from the eS-WiFi Module, the IP Address of the system must be set up. In addition to setting up IP Address for the system to ping, the number of times to perform the Ping and the delay between Pings can be set. Assuming that eS-Wifi Module has already joined to a network, the following steps will ping a system on the network.

```
Set Ping IP Address to 192.168.1.90 for a system on the Network: 
 > T1=192.168.1.90 _{\mbox{OK}} 
 >
```

Set Ping Repeats to 5:

```
> T2=5
OK
```


Set Ping Delay to 500 milliseconds:

```
> T3=500
OK
```

Check Ping Settings:

```
> T?
Ping Target Address: 192.168.1.90
Ping Repeats: 5
Ping Delay: 500 ms
OK
```

Ping 192.168.1.90 on the network for five times with a 500 millisecond delay between pings:

```
> T0
Pinging: 192.168.1.90
Ping Reply 32ms
Pinging: 192.168.1.90
Ping Reply 5ms
Pinging: 192.168.1.90
Ping Reply 3ms
Pinging: 192.168.1.90
Ping Reply 4ms
Pinging: 192.168.1.90
Ping Reply 6ms
OK
```

5.6 Transmission Control Protocol

To move data across a network, Transmission Control Protocol is most often used. The eS-WiFi Module can be configured to be a Server or Client on a network for Transmission Control Protocol communications. Also, the eS-WiFi Module supports TCP and UDP protocols for data transfer. The examples that follow show TCP and UDP Server, and TCP and UDP Client operational modes of the eS-WiFi module. The following examples also assume that Transmission Control Protocol software is used on the remote Server or remote Client system and that a port number has been set up for use.

5.6.1 TCP Server Set up and Data Transport

The first step in setting up the eS-WiFi Module to be a TCP server on the Network, assuming the eS-WiFi has been joined to a Network, is to set the protocol mode, followed by enabling the TCP server mode. Once the eS-Wifi Module is in TCP server mode, data can then be written to and read from a remote client on the network.

5.6.1.1 TCP Server Set Up

Set Communication Socket:

```
> P0=0
OK
```

Set protocol to TCP:

```
> P1=0
```

Set local TCP Port Number to 5024:

```
> P2=5024
OK
```

Enable TCP Server mode (the eS-WiFi Module will wait for a connection from a remote Client):


```
> P5=1
TCP Task set up
OK
> Waiting on TCP connection ...
> Accepted TCP connection from 192.168.1.107 on port 5024
```

Check TCP Server Mode Configuration:

```
> P?
   Transport Protocol: TCP
      Client IP ADDR: 192.168.1.107
      Local Port: 5024
   Remote Host IP ADDR: 0.0.0.0
      Remote Host Port: 5025
   TCP Server Enabled: Yes
   UDP Server Enabled: No
OK
```

5.6.1.2 Read and Write TCP Data in Server Mode

The eS-WiFi Module can read and write data over the network using Transmission Control Protocol. To aid in moving data over the network, the eS-WiFi Module's AT Command Set has commands for setting the Packet Size and for setting the Timeouts for data movement. For TCP communications, multiple reads may be needed to read all available data received. If no data is available, the read will timeout.

Set 1200 byte packet size for Read (range 1 to 1200):

```
> R1=1200
OK
>
```

Set five second timeout for Read in milliseconds (range 0 to 5000):

```
> R2=5000
```

Check Read Configuration:

```
> R?
Number of TCP/UPD bytes to receive per read: 1200
TCP/UPD receive timeout: 5000 ms
OK
```

Perform Read of Remote Client:

```
> R0
testing... 1234567890
OK
```

Write data to Remote Client:

```
> S0
0123456789
bytes sent 10
OK
```

The timeout was detected because the packet size was set to 1200 bytes, but only 10 bytes were written to the remote client. After a 5000 millisecond delay and no further data, the 10 bytes were sent.

5.6.2 TCP Client Setup and Data Transport

The first step in setting up the eS-WiFi Module to be a client on a Network, assuming the eS-WiFi has been joined to a Network, is to set the protocol mode, the remote port number, and remote server IP Address. Once the eS-Wifi Module has been set up as a client for TCP data transfer, data can then be written and read from a remote server on the network.

5.6.2.1 TCP Client Set Up

Set Communication Socket:

```
> P0=0
OK
```

Set protocol to TCP:

```
> P1=0
OK
```

Set remote Server IP Address:

```
> P3=192.168.1.110
OK
```

Set remote TCP Port Number to 5025:

```
> P4=5025
OK
>
```

Enable TCP Client mode:

```
> P6=1
Connecting to 192.168.1.110
OK
```

Once the TCP Client mode AT Command returns to the console, a connection has been established with a remote server or an error message will be generated on a connection failure.

Check TCP Client Mode Configuration:

```
> P?
   Transport Protocol: UDP
      Client IP ADDR: 0.0.0.0
            Local Port: 5024
   Remote Host IP ADDR: 192.168.1.110
      Remote Host Port: 5025
   TCP Server Enabled: NO
   UDP Server Enabled: NO
OK
>
```


5.6.2.2 Read and Write TCP Data in Client Mode

The eS-WiFi Module can read and write data over the network using Transmission Control Protocol. To aid in moving data over the network, the eS-WiFi Module's AT Command Set has commands for setting the Packet Size and for setting the Timeouts for data movement. For TCP communications, multiple reads may be needed to read all available data received. If no data is available, the read will timeout.

Set 1200 byte packet size for Read:

```
> R1=1200
OK
>
```

Set five second timeout for Read in milliseconds:

```
> R2=5000
```

Check Read Configuration:

```
> R?
Number of TCP/UPD bytes to receive per read: 1200
TCP/UPD receive timeout: 5000 ms
OK
```

Perform Read of Remote Client:

```
> R0
testing... 1234567890
OK
```

Write data to Remote Client:

```
> S0
0123456789
bytes sent 10
OK
```

The timeout was detected because the packet size was set to 1200 bytes, but only 10 bytes were written to the remote client. After a 5000 millisecond delay and no further data, the 10 bytes were sent.

5.6.3 UDP Server Set Up and Data Transport

The first step in setting up the eS-WiFi Module to be a UDP server on the Network, assuming the eS-WiFi has been joined to a Network, is to set the protocol mode, followed by enabling the UDP server mode. Once the eS-Wifi Module is in UDP server mode, data can then be written to and read from a remote client on the network.

5.6.3.1 UDP Server Set Up

Set protocol to UDP:

```
> P1=1
```

Set local UDP Port Number to 5024:

```
> P2=5024
OK
```

Enable UDP Server mode (the eS-WiFi Module will wait for a connection from a remote Client):

```
> P5=1
UDP Task set up
OK
> Waiting on UDP connection ...
> Accepted UDP connection from 192.168.1.110 on port 5024
```

Check UDP Server Mode Configuration:

```
> P?
   Transport Protocol: UDP
        Client IP ADDR: 192.168.1.110
        Local Port: 5024
   Remote Host IP ADDR: 0.0.0.0
        Remote Host Port: 5025
   TCP Server Enabled: No
   UDP Server Enabled: Yes
OK
```

5.6.3.2 Read and Write UDP Data in Server Mode

The eS-WiFi Module can read and write data over the network using Transmission Control Protocol. To aid in moving data over the network, the eS-WiFi Module's AT Command Set has commands for setting the Packet Size and for setting the Timeouts for data movement. For UDP communications, the number bytes sent to the server must match the number bytes to read -- any additional data sent to the server may be lost.

Set 1200 byte packet size for Read (range 1 to 1200):

```
> R1=1200
OK
>
```

Set five second timeout for Read in milliseconds (range 0 to 5000):

```
> R2=5000
```


Check Read Configuration:

```
> R?
Number of TCP/UPD bytes to receive per read: 1200
TCP/UPD receive timeout: 5000 ms
OK
```

Perform Read of Remote Client:

```
> R0
testing... 1234567890
OK
```

Write data to Remote Client:

```
> S0
0123456789
bytes sent 10
OK
>
```

The timeout was detected because the packet size was set to 1200 bytes, but only 10 bytes were written to the remote client. After a 5000 millisecond delay and no further data, the 10 bytes were sent.

5.6.4 UDP Client Setup and Data Transport

The first step in setting up the eS-WiFi Module to be a client on a Network, assuming the eS-WiFi has been joined to a Network, is to set the protocol mode, the remote port number, and remote server IP Address. Once the eS-Wifi Module has been set up as a client for UDP data transfer, data can then be written and read from a remote server on the network.

5.6.4.1 UDP Client Set Up

Set Communication Socket:

```
> P0=0
OK
```

Set protocol to UDP:

Set remote Server IP Address:

```
> P3=192.168.1.110
OK
```

Set remote UDP Port Number to 5025:

```
> P4=5025
OK
>
```


Enable UDP Client mode:

```
> P6=1
Connecting to 192.168.1.110
OK
>
```

Once the UDP Client mode AT Command returns to the console, a connection has been established with a remote server or an error message will be generated on a connection failure.

Check UDP Client Mode Configuration:

```
> P?
   Transport Protocol: UDP
        Client IP ADDR: 0.0.0.0
        Local Port: 5024
   Remote Host IP ADDR: 192.168.1.110
        Remote Host Port: 5025
   TCP Server Enabled: NO
   UDP Server Enabled: NO
OK
```

5.6.4.2 Read and Write UDP Data in Client Mode

The eS-WiFi Module can read and write data over the network using Transmission Control Protocol. To aid in moving data over the network, the eS-WiFi Module's AT Command Set has commands for setting the Packet Size and for setting the Timeouts for data movement. For UDP communications, the number bytes sent to the server must match the number bytes to read -- any additional data sent to the server may be lost.

Set 1200 byte packet size for Read:

```
> R1=1200
OK
>
```

Set five second timeout for Read in milliseconds:

```
> R2=5000
```

Check Read Configuration:

```
> R?
Number of TCP/UPD bytes to receive per read: 1200
TCP/UPD receive timeout: 5000 ms
OK
```

Perform Read of Remote Client:

```
> R0
testing... 1234567890
OK
```

Write data to Remote Client:

```
> S0
0123456789
bytes sent 10
OK
```

The timeout was detected because the packet size was set to 1200 bytes, but only 10 bytes were written to the remote client. After a 5000 millisecond delay and no further data, the 10 bytes were sent.

6. Appendix A

	Cod		Cod		Cod
Country	e	Country	e	Country	e
AFGHANISTAN	AF	GREECE	GR	OMAN	OM
ALGERIA	AL D7	GRENADA	GD	PAKISTAN	PK PW
ALGERIA	DZ	GUADELOUPE GUAM	GP	PALAU PANAMA	PVV
AMERICAN_SAMOA	AS		GU GT		PG
ANGULLA	AO	GUATEMALA		PAPUA_NEW_GUINEA	PY
ANTICUA AND BARRUDA	AI	GUERNSEY	GG	PARAGUAY	PE PE
ANTIGUA_AND_BARBUDA	AG	GUINEA	GN GW	PERU PHILIPPINES	PH
ARGENTINA	AR	GUINEA_BISSAU GUYANA			
ARMENIA	AM AM	HAITI	GY HT	POLAND PORTUGAL	PL PT
ARUBA	AW				PR
AUSTRALIA AUSTRIA	AU AT	HOLY_SEE_VATICAN_CITY_STATE	VA HN	PUETO_RICO	
		HONDURAS		QATAR	QA
AZERBAIJAN	AZ	HONG_KONG	HK	REUNION	RE
BAHAMAS	BS	HUNGARY	HU	ROMANIA	RO
BAHRAIN	BH	ICELAND	IS	RUSSIAN_FEDERATION	RU
BAKER_ISLAND	OB	INDIA	IN	RWANDA	RW
BANGLADESH	BD	INDONESIA	ID	SAINT_KITTS_AND_NEVIS	KN
BARBADOS	BB	IRAN_ISLAMIC_REPUBLIC_OF	IR	SAINT_LUCIA	LC
BELARUS	BY	IRAQ	IQ	SAINT_PIERRE_AND_MIQUELON	PM
BELGIUM	BE	IRELAND	IE 	SAINT_VINCENT_AND_THE_GRENADINES	VC
BELIZE	BZ	ISRAEL	IL.	SAMOA	WS
BENIN	BJ	ITALY	IT 	SANIT_MARTIN_SINT_MARTEEN	MF
BERMUDA	BM	JAMAICA	JM 	SAO_TOME_AND_PRINCIPE	ST
BHUTAN	BT	JAPAN	JP 	SAUDI_ARABIA	SA
BOLIVIA	ВО	JERSEY	JE	SENEGAL	SN
BOSNIA_AND_HERZEGOVINA	BA	JORDAN	JO	SERBIA	RS
BOTSWANA	BW	KAZAKHSTAN	KZ	SEYCHELLES	SC
BRAZIL	BR	KENYA	KE	SIERRA_LEONE	SL
BRITISH_INDIAN_OCEAN_TERRITORY	10	KIRIBATI	KI	SINGAPORE	SG
BRUNEI_DARUSSALAM	BN	KOREA_REPUBLIC_OF	KR/1	SLOVAKIA	SK
BULGARIA	BG	KOSOVO	0A	SLOVENIA	SI
BURKINA_FASO	BF	KUWAIT	KW	SOLOMON_ISLANDS	SB
BURUNDI	BI	KYRGYZSTAN	KG	SOMALIA	SO
CAMBODIA	КН	LAO_PEOPLES_DEMOCRATIC_REPUBIC	LA	SOUTH_AFRICA	ZA
CAMEROON	CM	LATVIA	LV	SPAIN	ES
CANADA	CA	LEBANON	LB	SRI_LANKA	LK
CAPE_VERDE	CV	LESOTHO	LS	SURINAME	SR
CAYMAN_ISLANDS	KY	LIBERIA	LR	SWAZILAND	SZ
CENTRAL_AFRICAN_REPUBLIC	CF	LIBYAN_ARAB_JAMAHIRIYA	LY	SWEDEN	SE
CHAD	TD	LIECHTENSTEIN	LI	SWITZERLAND	СН
CHILE	CL	LITHUANIA	LT	SYRIAN_ARAB_REPUBLIC	SY
CHINA	CN	LUXEMBOURG	LU	TAIWAN_PROVINCE_OF_CHINA	TW
CHRISTMAS_ISLAND	CX	MACAO MACEDONIA_FORMER_YUGOSLAV_REPUBLIC_O	МО	TAJIKISTAN	TJ
COLOMBIA	СО	F	MK	TANZANIA_UNITED_REPUBLIC_OF	TZ
COMOROS	KM	MADAGASCAR	MG	THAILAND	TH
CONGO CONGO_THE_DEMOCRATIC_REPUBLIC_OF_TH	CG	MALAWI	MW	TOGO	TG
E	CD	MALAYSIA	MY	TONGA	TO
COSTA_RICA	CR	MALDIVES	MV	TRINIDAD_AND_TOBAGO	TT
COTE_DIVOIRE	CI	MALI	ML	TUNISIA	TN
CROATIA	HR	MALTA	MT	TURKEY	TR
CUBA	CU	MAN_ISLE_OF	IM	TURKMENISTAN	TM
CYPRUS	CY	MARTINIQUE	MQ	TURKS_AND_CAICOS_ISLANDS	TC

Embedding Connectivity Everywhere	е	DOC-UM-20035-4.6		User Manual eS-WiFi M	odule
Country	Cod e	Country	Cod e	Country	Cod e
CZECH REPUBLIC	CZ	MAURITANIA	MR	TUVALU	TV
DENMARK	DK	MAURITIUS	MU	UGANDA	UG
DJIBOUTI	DJ	MAYOTTE	YT	UKRAINE	UA
DOMINICA	DM	MEXICO	MX	UNITED ARAB EMIRATES	AE
DOMINICAN REPUBLIC	DO	MICRONESIA FEDERATED STATES OF	FM	UNITED KINGDOM	GB
ECUADOR	EC	MOLDOVA REPUBLIC OF	MD	UNITED_KINGDOM UNITED STATES	US
EGYPT	EG	MONACO	MC	UNITED_STATES REV4	US/4
	SV		MN		Q2
EL_SALVADOR	3V	MONGOLIA	IVIIN	UNITED_STATES_NO_DFS UNITED_STATES_MINOR_OUTLYING_ISLAND	Ų2
EQUATORIAL_GUINEA	GQ	MONTENEGRO	ME	S	UM
ERITREA	ER	MONTSERRAT	MS	URUGUAY	UY
ESTONIA	EE	MOROCCO	MA	UZBEKISTAN	UZ
ETHIOPIA	ET	MOZAMBIQUE	MZ	VANUATU	VU
FALKLAND_ISLANDS_MALVINAS	FK	MYANMAR	MM	VENEZUELA	VE
FAROE_ISLANDS	FO	NAMIBIA	NA	VIET_NAM	VN
FIJI	FJ	NAURU	NR	VIRGIN_ISLANDS_BRITISH	VG
FINLAND	FI	NEPAL	NP	VIRGIN_ISLANDS_US	VI
FRANCE	FR	NETHERLANDS	NL	WALLIS_AND_FUTUNA	WF
FRENCH_GUINA	GF	NETHERLANDS_ANTILLES	AN	WEST_BANK	0C
FRENCH_POLYNESIA	PF	NEW_CALEDONIA	NC	WESTERN_SAHARA	EH
FRENCH_SOUTHERN_TERRITORIES	TF	NEW_ZEALAND	NZ	YEMEN	YE
GABON	GA	NICARAGUA	NI /	ZAMBIA	ZM
GAMBIA	GM	NIGER	NE	ZIMBABWE	ZW
GEORGIA	GE	NIGERIA	NG		
GERMANY	DE	NORFOLK_ISLAND	NF	World Wide (passive Ch12-14)	XX
GHANA	GH	NORTHERN_MARIANA_ISLANDS	MP	World Wide	XV
GIBRALTAR	GI	NORWAY	NO		

7. Document Revision History

Date	Name	Description	Revision	File Name
12/08/11	RES	Initial Creation	0.1	AT Command Set.docx
12/15/11	RES	Initial Release	1.0	AT Command Set r1.0.docx
12/15/11	SEP	Minor corrections/formatting	1.1	AT Command Set r1.1.docx
1/2/2012	RES	Added Usage Examples	1.2	AT Command Set r1.2.docx
3/12/2012	MFT	Changed Logo	1.3	AT Command Set r1.3.docx
11/21/2012	SEP	Update with new commands	1.4	AT Command Set r1.4.docx
2/5/2013	MFT	Update AT Command List	2.0	AT Command Set 2.0.docx
5/9/2013	SEP	Update AT Command List	2.1	AT Command Set 2.1.docx
6/16/2014	SEP	Updated for C2.4.0.X release	2.2	AT_Command_Set_ DOC_UM_20035-2.2.docx
3/10/2015	SEP	Updated for C2.5.0.X release	4.1	AT_Command_Set_ DOC_UM_20035-4.1.docx
5/21/2015	MFT	Streaming mode added	4.2	AT_Command_Set_ DOC_UM_20035-4.2.docx
10/5/2016	MFT	Added MQTT PF,PM,PG Commands	4.3	AT_Command_Set_ DOC_UM_20035-4.3.docx
07/18/2017	SEP	Updated Command Set	4.4	AT_Command_Set_ DOC_UM_20035-4.4.docx

Systems

2 Republic Road Billerica, MA 01862 www.inventeksys.com