Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### TEST REPORT OF THE

Inventek Systems
2.4 GHz eS-WiFi Module
Models: ISM4343-X
IN CONFORMANCE WITH
ETSI EN 300 328 V2.1.1 (2016-11)

Harmonized EN covering essential requirements under article 3.2 of the Radio Equipment Directive (RED) 2014/53/EU

# Remarks: Equipment complied with the specification Equipment did not comply with the specification Results were within measurement uncertainties This report is issued Under Signature: the Authority of: Alan Ghasiani Tested By: Signature Afzal Fazal Abral Fazal **Test Dates: Issue Date:** December 20, 2018 September 25, 2018 to December 19, 2018



NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

3505 Francis Circle Alpharetta, MA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.US Tech-lab.com

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# **Table of Contents**

| <u>CI</u> | ause <u>Title</u>                                          | <u>Page</u> |
|-----------|------------------------------------------------------------|-------------|
| 1         | Purpose of the Test Report                                 | 6           |
| 2         | Identification and Characteristics of Equipment Under Test | 6           |
| 3         | Standard Specific Transmitter Requirements                 | 7           |
| 4         | Technical Summary                                          | 19          |
| 5         | Measurements, Examinations and Derived Results             | 21          |
|           | 5.1 Tests Required                                         | 21          |
|           | 5.2 General Comments                                       | 22          |
|           | 5.3 Test Results                                           |             |
|           | 5.4 RF Exposure                                            | 102         |
| 6         | Test Instruments                                           | 103         |
| 7         | Photographs                                                | 104         |

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# **List of Figures**

| <u>Number</u> | <u>Title</u>                                                 | <u>Page</u> |
|---------------|--------------------------------------------------------------|-------------|
| Figure 1.     | 2412 MHz, b mode Low Channel PSD Plot                        | 28          |
|               | 2437 MHz, b mode Mid Channel PSD Plot                        |             |
|               | 2472 MHz, b mode High Channel PSD Plot                       |             |
|               | 2412 MHz, g mode Low Channel PSD Plot                        |             |
| Figure 5.     | 2437 MHz, g mode Mid Channel PSD Plot                        | 32          |
|               | 2472 MHz, g mode High Channel PSD Plot                       |             |
| Figure 7.     | 2412 MHz, n mode Low Channel PSD Plot                        | 34          |
| Figure 8.     | 2437 MHz, n mode Mid Channel PSD Plot                        | 35          |
| Figure 9.     | 2472 MHz, n mode High Channel PSD Plot                       | 36          |
| Figure 10     | . Adaptivity Worst Case                                      | 38          |
| Figure 11     | . Dwell Time                                                 | 39          |
|               | . 2412 MHz b mode Channel 1 Occupied Bandwidth               |             |
|               | . 2462 MHz b mode Channel 11 Occupied Bandwidth              |             |
| Figure 14     | . 2472 MHz b mode High Channel 13 Occupied                   | 43          |
| _             | . 2412 MHz g mode Channel 1 Occupied Bandwidth               |             |
| Figure 16     | . 2462 MHz g mode Channel 11 Occupied Bandwidth              | 45          |
| _             | . 2472 MHz g mode Channel 13 Occupied Bandwidth              |             |
| _             | . 2412 MHz n mode Channel 1 Occupied Bandwidth               |             |
| -             | . 2462 MHz n mode Channel 11 Occupied Bandwidth              |             |
|               | . 2472 MHz n mode Channel 13 Occupied Bandwidth              |             |
|               | . Transmitter Unwanted Emissions in the Out-of-Band Domain L |             |
|               | . b mode, Low Channel TX OOB Plot 1                          |             |
| _             | b mode, Low Channel TX OOB Plot 2                            |             |
|               | g mode, Low Channel TX OOB Plot 1                            |             |
|               | g mode, Low Channel TX OOB Plot 2                            |             |
|               | n mode, High Channel TX OOB Plot 1                           |             |
| -             | . n mode, High Channel TX OOB Plot 2                         |             |
| Figure 28     | 802.11b, Low Channel, Plot 1                                 | 63          |
|               | . 802.11b, Low Channel, Plot 2                               |             |
| -             | . 802.11b, Low Channel, Plot 3                               |             |
| _             | . 802.11b, Low Channel, Plot 4                               |             |
|               | . 802.11b, Low Channel, Plot 5                               |             |
|               | 802.11b, Low Channel, Plot 6                                 |             |
|               | . 802.11b, High Channel, Plot 1                              |             |
| Figure 35     | . 802.11b, High Channel, Plot 2                              |             |
|               | . 802.11b, High Channel, Plot 3                              |             |
| i luule 3/    | . 002. I ID. FIUH CHAIHEL FIUL 4                             | / ∠         |

US Tech Report: ETSI EN 300 328 V2.1.1 (2016-11) Description of EUT: 2.4GHz eS-WiFi Module Test Report Number: 18-0270 Issue Date: December 19, 2018 Customer: Inventek Systems Model: ISM4343-X Figure 39. 802.11b, High Channel, Plot 6......74 Figure 40. 802.11g, Low Channel, Plot 1......75 Figure 41. 802.11g, Low Channel, Plot 2......76 Figure 42. 802.11g, Low Channel, Plot 3......77 Figure 43. 802.11g, Low Channel, Plot 4......78 Figure 44. 802.11g, Low Channel, Plot 5......79 Figure 45. 802.11g, Low Channel, Plot 6......80 Figure 46. 802.11g, High Channel, Plot 1......81 Figure 47. 802.11g, High Channel, Plot 2......82 Figure 48. 802.11q, High Channel, Plot 3......83 Figure 49. 802.11g, High Channel, Plot 4......84 Figure 50. 802.11g, High Channel, Plot 5......85 Figure 51. 802.11g, High Channel, Plot 6......86 Figure 52. 802.11n, Low Channel, Plot 1......87 Figure 53. 802.11n, Low Channel, Plot 2......88 Figure 54. 802.11n, Low Channel, Plot 3......89 Figure 55. 802.11n, Low Channel, Plot 4......90 Figure 56. 802.11n, Low Channel, Plot 5......91 Figure 57. 802.11n, Low Channel, Plot 6......92 Figure 58. 802.11n, High Channel, Plot 1......93 Figure 59. 802.11n, High Channel, Plot 2......94 Figure 60. 802.11n, High Channel, Plot 3......95 Figure 61. 802.11n, High Channel, Plot 4......96 Figure 62. 802.11n, High Channel, Plot 5......97 Figure 63. 802.11n, High Channel, Plot 6......98 Figure 64. EUT (circled) on Evaluation Board......104 Figure 65. Radiated Spurious Emissions Below 200 MHz......105 Figure 66. Radiated Spurious Emissions Below 1000 MHz......106 Figure 67. Radiated Spurious Emissions Above 1000 MHz......107 Figure 68. 30-200 MHz Substitution Test Setup .......108 Figure 69. 200-1000 MHz Substitution Testing......109 Figure 70. Above 1 GHz Substitution Testing .......110 Figure 71. Extreme Temperature Test Setup......111 Figure 72. Adaptivity Test Setup......112 Figure 73. Receiver Blocking Test Setup......113

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# **List of Tables**

| Number <u>Title</u>                                                                | <u>Page</u> |
|------------------------------------------------------------------------------------|-------------|
| Table 1. Transmitter Test Suites and Overview of Results                           | 21          |
| Table 2. Receiver Test Suites and Overview Results                                 | 21          |
| Table 3. Measurement Uncertainty                                                   | 22          |
| Table 4. RF Output Power Measurement                                               | 25          |
| Table 5. Power Spectral Density Measurements                                       | 27          |
| Table 6. Transmitter Unwanted Emission Limits                                      | 54          |
| Table 7. Transmitter Spurious Emissions Fundamental Signal (chip antenna -         | ·b          |
| mode)                                                                              | 55          |
| Table 8. Transmitter Spurious Emissions Fundamental Signal (chip antenna -         | · g         |
| mode)                                                                              |             |
| Table 9. Transmitter Spurious Emissions Fundamental Signal (chip antenna -         |             |
| mode)  Table 10. Transmitter Spurious Emissions Fundamental Signal (external anter | 57          |
|                                                                                    |             |
| – b mode)                                                                          | 58          |
| Table 11. Transmitter Spurious Emissions Fundamental Signal (external anter        | าทล         |
| – g mode)                                                                          |             |
| Table 12. Transmitter Spurious Emissions Fundamental Signal (external anter        |             |
| – n mode)                                                                          |             |
| Table 13. Transmitter Unwanted Emissions in Spurious Domain - Vertical             |             |
| Table 14. Transmitter Unwanted Emissions in Spurious Domain - Horizontal           |             |
| Table 15. Spurious Emissions Limits for Receivers                                  |             |
| Table 16. Transmitter Unwanted Emissions in Spurious Domain - Horizontal           |             |
| Table 17. Receiver Blocking Parameters for Receiver Category 1 Equipment.          |             |
| Table 18. Blocking Signal Test Results                                             |             |
| Table 19. Test Equipment                                                           | 103         |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 1 Purpose of the Test Report

This test report is being generated to show that the Inventek eS-WiFi Module, Model ISM4343-X complies with the requirements of ETSI EN 300 328 V2.1.1 (2016-11). The module is designed to transmit from either an etched integrated antenna or through the u.fl port. For u.fl transmission the module is being evaluated with two options of antennas, with the following gain: +1.4 dBi and +3.2 dBi.

#### 2 Identification and Characteristics of Equipment Under Test

This section contains the unmodified Application Form submitted by the Manufacturer. The Application Form contains 13 pages, which are included in the total number of pages of this report.

The Equipment Under Test (EUT) is the Inventek eS-WiFi Module, Model ISM4343-X. The EUT is an embedded Serial WiFi (eS-WiFi), wireless internet connectivity module that operates in the 2.4 GHz spectrum. The eS-WiFi module's hardware consists of an ARM Cortex-based applications processor, a single stream 802.11n MAC/baseband/radio, a power amplifier (PA), and a receive low-noise amplifier (LNA). The eS-WiFi module has two antenna options, an on board PCB etched antenna or an U.FL connector for external 2.4 GHz antenna. The eS-WiFi module provides a UART interface enabling connection to an embedded design. The eS-WiFi module requires no operating system and has a completely integrated TCP/IP Stack. The eS-WiFi module hardware can be used with Inventek's IWIN (Inventek Wireless Interoperability Network). This product is targeted for low cost embedded wireless applications and enables a quick, easy and cost effective method adding WiFi connectivity.

The radio module configuration evaluated in this test report is the Inventek ISM4343-X-R48-L54 2.4 GHz eS-WiFi Module with special designation: ISM4343-X for the CE market.

The different model numbers are applied for marketing reasons and the suffixes depict variations of the module as follows:

- -E = integrated trace antenna
- -U = external u.fl antenna connecter added
- -EVB = evaluation board

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### **Standard Specific Transmitter Requirements** 3

# E.2 Information as required by EN 300 328 V2.1.1, clause 5.4.1

| In accordance with EN 300 328, clause 5.4.1, the following information provided by the manufacturer. |
|------------------------------------------------------------------------------------------------------|
| a) The type of modulation used by the equipment:                                                     |
| ☐ FHSS                                                                                               |
| ○ Other forms of modulation                                                                          |
| b) In case of FHSS modulation:                                                                       |
| <ul> <li>In case of non-Adaptive Frequency Hopping equipment:</li> </ul>                             |
| The number of Hopping Frequencies: N/A                                                               |
| <ul> <li>In case of Adaptive Frequency Hopping Equipment:</li> </ul>                                 |
| The maximum number of Hopping Frequencies: N/A                                                       |
| The minimum number of Hopping Frequencies: N/A                                                       |
| • The (average) Dwell Time: N/A                                                                      |
| c) Adaptive / non-adaptive equipment:                                                                |
| □ Non-adaptive Equipment                                                                             |
| Adaptive Equipment without the possibility to switch to a non-adaptive                               |
| mode                                                                                                 |
| Adaptive Equipment which can also operate in a non-adaptive mode                                     |

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# d) In case of adaptive equipment:

| -           |                                                                           |
|-------------|---------------------------------------------------------------------------|
| The m       | aximum Channel Occupancy Time implemented by the equipment: <u>&lt;40</u> |
| ms          |                                                                           |
|             | The equipment has implemented an LBT based DAA mechanism                  |
| •           | In case of equipment using modulation different from FHSS:                |
|             | ☐ The equipment is Frame Based equipment                                  |
|             | The equipment is Load Based equipment                                     |
|             | The equipment can switch dynamically between Frame Based and Load         |
|             | Based equipment                                                           |
|             | The CCA time implemented by the equipment: _N/A_ µs                       |
| $\boxtimes$ | The equipment has implemented a non-LBT mechanism                         |
|             | The equipment can operate in more than one adaptive mode                  |
|             |                                                                           |
| e) In c     | ase of non-adaptive Equipment:                                            |
| The m       | aximum RF Output Power (e.i.r.p.): <u>N/A</u> dBm                         |
| The m       | aximum (corresponding) Duty Cycle: <u>N/A</u> %                           |
| Equip       | ment with dynamic behavior, that behavior is described here. (e.g. the    |
| differe     | nt combinations of duty cycle and corresponding power levels to be        |
| declar      | ed): N/A                                                                  |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### f) The worst case operational mode for each of the following tests:

**RF Output Power** 

19.2 dBm (EIRP)

**Power Spectral Density** 

9.8 dBm/1MHz

Duty cycle, TX-Sequence, TX-gap

N/A

Accumulated Transmit Time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)

N/A

Hopping Frequency Separation (only for FHSS equipment)

<u>N/A</u>

Medium Utilization

N/A

Adaptivity & Receiver Blocking

Non-LBT & > -30 dBm

Nominal Channel Bandwidth

17.782 MHz

Transmitter unwanted emissions in the OOB domain

The EUT complies with the requirement per clause 4.3.2.8

Transmitter unwanted emissions in the spurious domain

The EUT complies with the requirement per clause 4.3.2.9

Receiver spurious emissions

The EUT complies with the requirement per clause 4.3.2.10

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# g) The different transmit operating modes (check all that apply):

| Operating mode 1: Single Antenna Equipment                            |
|-----------------------------------------------------------------------|
| □ Equipment with only one antenna                                     |
| Equipment with two diversity antennas but only one antenna active     |
| at any moment in time                                                 |
| ☐ Smart Antenna Systems with two or more antennas, but operating      |
| in a (legacy) mode where only one antenna is used. (e.g. IEEE         |
| 802.11™ [i.3] legacy mode in smart antenna systems)                   |
| ☐ Operating mode 2: Smart Antenna Systems - Multiple Antennas without |
| beam forming                                                          |
| ☐ Single spatial stream / Standard throughput / (e.g. IEEE            |
| 802.11™ [i.3] legacy mode)                                            |
| ☐ High Throughput (> 1 spatial stream) using Nominal Channel          |
| Bandwidth 1                                                           |
| ☐ High Throughput (> 1 spatial stream) using Nominal Channel          |
| Bandwidth 2                                                           |
| NOTE 1: Add more lines if more channel bandwidths are supported.      |
| Operating mode 3: Smart Antenna Systems - Multiple Antennas with      |
| beam forming                                                          |
| ☐Single spatial stream / Standard throughput (e.g. IEEE 802.11™       |
| [i.3] legacy mode)                                                    |
| ☐ High Throughput (> 1 spatial stream) using Nominal Channel          |
| Bandwidth 1                                                           |
| ☐ High Throughput (> 1 spatial stream) using Nominal Channel          |
| Bandwidth 2                                                           |

NOTE: Add more lines if more channel bandwidths are supported.

Other:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

| h) | In | case | of | Smart | Antenna | Systems: |
|----|----|------|----|-------|---------|----------|
|----|----|------|----|-------|---------|----------|

| •                                                                                   |
|-------------------------------------------------------------------------------------|
| ■ The number of Receive chain: <u>N/A</u>                                           |
| ■ The number of Transmit chains: N/A                                                |
| Symmetrical power distribution                                                      |
| Asymmetrical power distribution                                                     |
| n case of beam forming, the maximum beam forming gain: N/A                          |
| NOTE: Beam forming gain does not include the basic gain of a single antenna.        |
| ) Operating Frequency Range(s) of the equipment:                                    |
| <ul> <li>Operating Frequency Range 1: <u>2412 MHz</u> to <u>2472 MHz</u></li> </ul> |
| <ul><li>Operating Frequency Range 2: MHz to MHz</li></ul>                           |
| NOTE: Add more lines if more Frequency Ranges are supported.                        |
| i) Nominal Channel Bandwidth(s):                                                    |
| <ul> <li>Nominal Channel Bandwidth 1: <u>17.882</u> MHz</li> </ul>                  |
| <ul> <li>Nominal Channel Bandwidth 2: MHz</li> </ul>                                |
| NOTE: Add more lines if more channel bandwidths are supported.                      |
| k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):           |
| ☐ Stand-alone                                                                       |
| ☐ Combined Equipment (Equipment where the radio part is fully                       |
| integrated within another type of equipment)                                        |
| Plug-in radio device (Equipment intended for a variety of host systems)             |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# I) The normal and the extreme operating conditions that apply to the equipment:

# **Normal Operating Conditions (if applicable):** Operating temperature range: -40° C to + 85° C

**Extreme Operating Conditions:** 

Other (please specify if applicable): N/A

| Operating temperature range:          | Minim | um: -40° C  | max      | ximum: +85° C |
|---------------------------------------|-------|-------------|----------|---------------|
| Other (please specify if applicable): |       | Minimum: N/ | <u>A</u> | Maximum: N/A  |
|                                       |       |             |          |               |

Details provided are for the:  $\boxtimes$ Stand-alone equipment Combined (or host) equipment  $\boxtimes$ Test jig

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels:

| Antenna Type:                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|--|--|
| Integral Antenna (information to be provided in case of conducted           |  |  |  |  |  |
| measurements)                                                               |  |  |  |  |  |
| Antenna Gain: 3.2 dBi (max antenna gain)                                    |  |  |  |  |  |
| If applicable, additional beam-forming gain (excluding basic antenna gain): |  |  |  |  |  |
| <u>N/A</u>                                                                  |  |  |  |  |  |
| ☐ Temporary RF connector provided                                           |  |  |  |  |  |
| ☐ No temporary RF connector provided                                        |  |  |  |  |  |
| □ Dedicated Antennas (equipment with antenna connector)                     |  |  |  |  |  |
| Single power level with corresponding antenna(s)                            |  |  |  |  |  |
| Multiple power settings and corresponding antenna(s)                        |  |  |  |  |  |
| Number of different Power Levels:                                           |  |  |  |  |  |
| Power Level 1: <u>N/A</u> dBm                                               |  |  |  |  |  |
| Power Level 2: <u>N/A</u> dBm                                               |  |  |  |  |  |
| Power Level 3: <u>N/A</u> dBm                                               |  |  |  |  |  |
| NOTE 1: Add more lines in case the equipment has more power levels.         |  |  |  |  |  |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beam-forming gain (Y) if applicable

Power Level 1: <u>15.99 dBm + 3.2 dBi = 19.19 dBm</u> (E.I.R.P.) Number of antenna assemblies provided for this power level:

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name                                                                              |
|------------|------------|-------------------|--------------------------------------------------------------------------------------------------------|
| 1          | +2.6       | 17.41             | W24P-U 2400-2500 MHz WiFi PCB<br>antenna with U.Fl Connector and 90<br>mm cable length                 |
| 2          | +3.2       | 18.01             | W24P-U 2400-2500 & 4900-5900 MHz Dual Band WiFi PCB antenna with U.Fl Connector and 90 mm cable length |
| 3          | +0.0       | 14.81             | Inventek Etched Antenna                                                                                |
| 4          | N/A        | N/A               | N/A                                                                                                    |

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: N/A dBm

Number of antenna assemblies provided for this power level:

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          | N/A        | N/A               | N/A                       |
| 2          | N/A        | N/A               | N/A                       |
| 3          | N/A        | N/A               | N/A                       |
| 4          | N/A        | N/A               | N/A                       |

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Power Level 3: N/A dBm

Number of antenna assemblies provided for this power level:

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          | N/A        | N/A               | N/A                       |
| 2          | N/A        | N/A               | N/A                       |
| 3          | N/A        | N/A               | N/A                       |
| 4          | N/A        | N/A               | N/A                       |

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices:

| Details provid | ded are for the:                       |  |  |  |  |
|----------------|----------------------------------------|--|--|--|--|
|                | Stand-alone equipment                  |  |  |  |  |
|                | Combined (or host) equipment           |  |  |  |  |
|                | Test jig                               |  |  |  |  |
| Supply Volta   | ge                                     |  |  |  |  |
|                | AC mains State AC voltage: V           |  |  |  |  |
|                | DC State DC voltage: 3.0 – 5.0 V       |  |  |  |  |
| In case of DO  | C, indicate the type of power source   |  |  |  |  |
|                | Internal Power Supply                  |  |  |  |  |
|                | External Power Supply or AC/DC adapter |  |  |  |  |
|                | Battery                                |  |  |  |  |
|                | Other: powered via laptop USB port     |  |  |  |  |

US Tech Report: ETSI EN 300 328 V2.1.1 (2016-11) Description of EUT: 2.4GHz eS-WiFi Module Test Report Number: 18-0270 Issue Date: December 19, 2018 Customer: Inventek Systems Model: ISM4343-X o) Describe the test modes available which can facilitate testing: The EUT was able to continuously transmit on individual channels. p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.): IEEE 802.11 b/g/n, WiFi Compliant q) If applicable, the statistical analysis referred to in clause 5.4.1 q) (to be provided as separate attachment) r) If applicable, the statistical analysis referred to in clause 5.4.1 r) (to be provided as separate attachment) s) Geo-Location capability supported by the equipment: Yes The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user  $\boxtimes$ No

f) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3):

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### E.3 Combination for testing (see clause 5.3.2.3 of EN 300 328 V2.1.1)

From all combinations of conducted power settings and intended antenna assembly (ies) specified in clause 3.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in EN 300 328, this power setting is to be used for testing against the requirements of EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also EN 300 328, clause 5.3.2.3.

This has been considered. The EUT is programmed to operate at it maximum output setting for this mode of operation.

#### E.4 Additional information provided by the applicant

# E.4.1 Modulation ITU Class(es) of emission: Can the transmitter operate unmodulated? Yes No E.4.2 Duty Cycle The transmitter is intended for: Continuous duty Intermittent duty Continuous operation possible for testing purposes

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# **E.4.3 About the UUT**

| $\boxtimes$ | The equipment submitted is representative production models      |
|-------------|------------------------------------------------------------------|
|             | If not, the equipment submitted is pre-production models?        |
|             | If pre-production equipment are submitted, the final production  |
| equip       | ment will be identical in all respects with the equipment tested |
|             | If not, supply full details                                      |
|             |                                                                  |
|             |                                                                  |
| E.4.4 Addit | ional items and/or supporting equipment provided                 |
|             | Spare batteries (e.g. for portable equipment)                    |
|             | Battery charging device                                          |
|             | External Power Supply or AC/DC adapter                           |
|             | Test Jig or interface box                                        |
|             | RF test fixture (for equipment with integrated antennas)         |
|             | Host System                                                      |
|             | Manufacturer: Inventek Systems                                   |
|             | Model #: ISM4343-X                                               |
|             | Model name: 2.4 GHz eS-WiFi Module                               |
|             | Combined equipment                                               |
| •           | Manufacturer:                                                    |
|             | Model #:                                                         |
| •           | Model name:                                                      |
| $\boxtimes$ | User Manual                                                      |
|             | Technical documentation (Handbook and circuit diagrams)          |

Customer:

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# 4 Technical Summary

## **Applicant information**

Applicant's representative : Martin Tierney Company : Inventek

Address : 2 Republic Road

City : Billerica State : MA Postal code : 01862

Country : United States Telephone number : +1 978-667-1962

Fax number : N/A

### **Description of test item**

Test item : ISM43903 2.4GHz WiFi

Manufacturer : Inventek

Frequency Characteristics : 2412 MHz to 2472 MHz

Type : 802.11 b/g/n

Modulation Type : OFDM/64-QAM, 16-QAM,

QPSK, BPSK, CCK, DQPSK, DBPSK

Temperature Range : -40°C to 85°C

Specification(s) : None

Model Name : 2.4 GHz eS-WiFi Module

Model Number : ISM4343-X

Serial number : ENGINEERING SAMPLE

Revision : Rev. B Receipt number : 18-0270

Receipt date : September 17, 2018

Customer:

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# Test(s) performed

Location : US Tech

Tests started : September 25, 2018 Tests completed : December 19, 2018

Purpose of tests : Compliance with standard

Test specifications : ETSI EN 300 328 V2.1.1 (2016-11)
Test engineer(s) : Afzal Fazal, Mark Afroozi, George Yang

Project leader : George Yang
Report written by : Afzal Fazal
Report approved by : Alan Ghasiani
Report date : December 19, 2018

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 5 Measurements, Examinations and Derived Results

# 5.1 Tests Required

The following Tests are required per EN 300 328 V2.1.1:

**Table 1. Transmitter Test Suites and Overview of Results** 

| Essential Radio Test suite                                           | Applicable | Reference<br>Clause in<br>Standard | Compliance<br>Results |
|----------------------------------------------------------------------|------------|------------------------------------|-----------------------|
| RF Output Power                                                      | Yes        | 4.3.2.2                            | Compliant             |
| Power Spectral Density                                               | Yes        | 4.3.2.3                            | Compliant             |
| Duty Cycle, TX-Sequence, TX-Gap                                      | No         | 4.3.2.4                            | N/A                   |
| Accumulated Transmit Time, Frequency Occupation and Hopping Sequence | No         | 4.3.1.4                            | N/A                   |
| Hopping Frequency Separation                                         | No         | 4.3.1.5                            | N/A                   |
| Medium Utilization                                                   | No         | 4.3.2.5                            | N/A                   |
| Occupied Channel Bandwidth                                           | Yes        | 4.3.2.7                            | Compliant             |
| Transmitter Unwanted Emissions in the OOB Domain                     | Yes        | 4.3.2.8                            | Compliant             |
| Transmitter Unwanted Emissions in the Spurious Domain                | Yes        | 4.3.2.9                            | Compliant             |

**Table 2. Receiver Test Suites and Overview Results** 

| Essential Radio Test suite  | Applicable | Reference clause in this report | Compliance<br>Results |
|-----------------------------|------------|---------------------------------|-----------------------|
| Adaptivity                  | Yes        | 4.3.2.6                         | Compliant             |
| Receiver Spurious Emissions | Yes        | 4.3.2.10                        | Compliant             |
| Receiver Blocking           | Yes        | 4.3.2.11                        | Compliant             |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 5.2 General Comments

This section contains the test results and derived data. Details of the test methods used have been recorded and are kept on file by the laboratory. Wherever possible, the test methods described in ETSI document ETR 027 have been used.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

The testing preformed requires the uncertainty levels to be below the listed values in section 5.2 of ESTI 300 328 v2.1.1. The following table lists the limit of uncertainty per test and the current uncertainty of the testing done

**Table 3. Measurement Uncertainty** 

| Parameter                            | Uncertainty<br>Requirement | Uncertainty of Testing                                                                            |  |
|--------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------|--|
| Occupied Channel Bandwidth           | <u>+</u> 5.0%              | Less Than <u>+</u> 0.1dB                                                                          |  |
| RF Output power, Conducted           | <u>+</u> 1.5dB             | <u>+</u> 0.47dB                                                                                   |  |
| Power Spectral Density,<br>Conducted | <u>+</u> 3.0dB             | <u>+</u> 0.47dB                                                                                   |  |
| Unwanted Emissions, Conducted        | <u>+</u> 3.0dB             | <u>+</u> 2.80dB                                                                                   |  |
| All Emissions, Radiated              | <u>+</u> 6.0dB             | 30MHz - 200MHz, <u>+</u> 5.39dB<br>200MHz - 1GHz, <u>+</u> 5.18dB<br>1GHz -18GHz, <u>+</u> 5.21dB |  |
| Temperature                          | <u>+</u> 1.0°C             | <u>+</u> 0.55°C                                                                                   |  |
| Humidity                             | <u>+</u> 5.0%              | <u>+</u> 5.00%                                                                                    |  |
| DC and Low Frequency Voltages        | <u>+</u> 3.0%              | <u>+</u> 0.05%                                                                                    |  |
| Time                                 | <u>+</u> 5.0%              | <u>+</u> 1.00%                                                                                    |  |
| Duty Cycle                           | <u>+</u> 5.0%              | <u>+</u> 1.00%                                                                                    |  |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

The purpose of testing was to demonstrate compliance with the latest version of the test specification.

Date of receipt of test sample(s): September 15, 2018

Measurements were performed between the following dates(s):

Start Date: September 25, 2018

Completion Date: December 19, 2018

All of the measurements described in this report were performed at the premises of US Tech, 3505 Francis Circle, Alpharetta, GA 30004 USA.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 5.3 Test Results

#### **5.3.1 RF Output Power (Clause 4.3.2.2)**

The RF Output Power was measured at the lowest, the middle, and the highest channel and at normal and extreme operating temperatures. The measurements were performed per the procedures of ETSI EN 300 328 section 5.4.2. The test equipment was set to a center frequency at which the EUT will transmit. The span was set to 10 MHz and the RBW and VBW were set to 1 MHz and 3 MHz, respectively.

In accordance with ETSI EN 300 328 section 4.3.2.2, for adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm. This limit shall apply for any combination of power level and intended antenna assembly.

Maximum Antenna Assembly Gain: +3.2 dBi

Beam-forming Gain: 0 dBi

Test Date: September 27, 2018

Signature: Tested By: Afzal Fazal

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

**Table 4. RF Output Power Measurement** 

| Frequency<br>(MHz) | Mode     | Measured<br>Result (dBm)<br>A | Combination of<br>Power Level<br>and Antenna<br>Gain (dBm)<br>A+G+Y | Limit (dBm) | Margin (dB) |
|--------------------|----------|-------------------------------|---------------------------------------------------------------------|-------------|-------------|
| _                  |          |                               | ed at -40°C                                                         |             |             |
| 2412.00            | b        | 12.72                         | 15.92                                                               | 20          | 4.08        |
| 2437.00            | b        | 13.65                         | 16.85                                                               | 20          | 3.15        |
| 2462.00            | b        | 13.90                         | 17.10                                                               | 20          | 2.90        |
| 2472.00            | b        | 14.09                         | 17.29                                                               | 20          | 2.71        |
| 2412.00            | g        | 11.74                         | 14.94                                                               | 20          | 5.06        |
| 2437.00            | g        | 13.74                         | 16.94                                                               | 20          | 3.06        |
| 2462.00            | g        | 12.85                         | 16.05                                                               | 20          | 3.95        |
| 2472.00            | g        | 14.67                         | 17.87                                                               | 20          | 2.13        |
| 2412.00            | n        | 11.12                         | 14.32                                                               | 20          | 5.68        |
| 2437.00            | n        | 12.19                         | 15.39                                                               | 20          | 4.61        |
| 2462.00            | n        | 11.83                         | 15.03                                                               | 20          | 4.97        |
| 2472.00            | n        | 12.37                         | 15.57                                                               | 20          | 4.43        |
| ·                  |          | Measure                       | ed at 25°C                                                          |             |             |
| 2412.00            | b        | 13.68                         | 16.88                                                               | 20          | 3.12        |
| 2437.00            | b        | 14.18                         | 17.38                                                               | 20          | 2.62        |
| 2462.00            | b        | 14.56                         | 17.76                                                               | 20          | 2.24        |
| 2472.00            | b        | 14.84                         | 18.04                                                               | 20          | 1.96        |
| 2412.00            | g        | 13.50                         | 16.70                                                               | 20          | 3.30        |
| 2437.00            | g        | 14.00                         | 17.20                                                               | 20          | 2.80        |
| 2462.00            | g        | 14.36                         | 17.56                                                               | 20          | 2.44        |
| 2472.00            | g        | 15.40                         | 18.60                                                               | 20          | 1.40        |
| 2412.00            | n        | 11.41                         | 14.61                                                               | 20          | 5.39        |
| 2437.00            | n        | 12.27                         | 15.47                                                               | 20          | 4.53        |
| 2462.00            | n        | 12.38                         | 15.58                                                               | 20          | 4.42        |
| 2472.00            | n        | 12.91                         | 16.11                                                               | 20          | 3.89        |
| •                  |          | Measure                       | ed at 85°C                                                          | •           | 1           |
| 2412.00            | b        | 14.36                         | 17.56                                                               | 20          | 2.44        |
| 2437.00            | b        | 15.20                         | 18.40                                                               | 20          | 1.60        |
| 2462.00            | b        | 15.26                         | 18.46                                                               | 20          | 1.54        |
| 2472.00            | b        | 15.99                         | 19.19                                                               | 20          | 0.81        |
| 2412.00            | g        | 14.18                         | 17.38                                                               | 20          | 2.62        |
| 2437.00            | g        | 13.93                         | 17.13                                                               | 20          | 2.87        |
| 2462.00            | <u>5</u> | 14.37                         | 17.57                                                               | 20          | 2.43        |
| 2472.00            | <u>5</u> | 15.20                         | 18.40                                                               | 20          | 1.60        |
| 2412.00            | n        | 12.08                         | 15.28                                                               | 20          | 4.72        |
| 2437.00            | n        | 12.76                         | 15.96                                                               | 20          | 4.04        |
| 2462.00            | n        | 12.87                         | 16.07                                                               | 20          | 3.93        |
| 2472.00            | n        | 13.46                         | 16.66                                                               | 20          | 3.34        |

Note 1: All modes tested at output power set to a value of "20".

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 5.3.2 Duty Cycle, TX-Sequence, TX-Gap (Clause 4.3.2.4)

The EUT is considered to be Adaptive equipment and this clause is only applicable for Non-Adaptive Equipment; therefore the Duty Cycle, TX-Sequence, and TX-Gap measurements are not applicable.

#### 5.3.3 Power Spectral Density (Clause 4.3.2.3)

The EUT employs wide band modulation other than frequency hopping spread spectrum (FHSS) modulation; therefore the power spectral density was measured per the procedures of ETSI EN 300 328 section 5.4.3 Option 2. The RBW was set to 1 MHz and the Video Bandwidth was set to 3X RBW. The span was set to 3 MHz the RMS detector was used and the sweep time was set to 60s and the trace was set to Max Hold.

The Power Spectral Density is the mean e.i.r.p spectral density during transmissions burst. In accordance with ETSI EN 300 328 section 4.3.2.3, the power density shall be no greater than 10 dBm per MHz band.

Environmental Conditions: Ambient Temperature: 20 °C Relative Humidity: 55%

The maximum Power Spectral Density (PSD) e.i.r.p is calculated with the following formula below.

PSD = D+G+Y+10Log (1/DC) (dBm/MHz)

Where:

D is the measured PSD value observed.

DC is the observed Duty Cycle (in this case DC = 1 during testing since the EUT is programmed for >98% duty cycle for testing purpose.)

G is the applicable antenna assembly gain in dBi

Y is the beam-forming gain in dB \*if applicable.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

**Table 5. Power Spectral Density Measurements** 

| Table 5. Power Spectral Density Measurements |                              |                                                 |                    |             |          |
|----------------------------------------------|------------------------------|-------------------------------------------------|--------------------|-------------|----------|
| Transmitter<br>Frequency<br>(MHz)            | Measured<br>PSD<br>(dBm/MHz) | PSD<br>(dBm/MHz) =<br>D + G + Y<br>+10log(1/DC) | Limit<br>(dBm/MHz) | Margin (dB) | Detector |
|                                              |                              | 802.11b                                         | mode               |             |          |
| 2412.55                                      | 4.962                        | 8.162                                           | 10                 | 1.8         | RMS      |
| 2436.67                                      | 6.163                        | 9.363                                           | 10                 | 0.6         | RMS      |
| 2472.49                                      | 6.609                        | 9.809                                           | 10                 | 0.2         | RMS      |
|                                              |                              | 802.11g                                         | g mode             |             |          |
| 2413.33                                      | 2.724                        | 5.924                                           | 10                 | 4.1         | RMS      |
| 2435.55                                      | 3.862                        | 7.062                                           | 10                 | 2.9         | RMS      |
| 2473.27                                      | 4.423                        | 7.623                                           | 10                 | 2.4         | RMS      |
| 802.11n mode                                 |                              |                                                 |                    |             |          |
| 2410.82                                      | 2.258                        | 5.458                                           | 10                 | 4.5         | RMS      |
| 2435.69                                      | 3.740                        | 6.940                                           | 10                 | 3.1         | RMS      |
| 2470.70                                      | 4.201                        | 7.401                                           | 10                 | 2.6         | RMS      |

Note 1: 802.11 B mode tested at output power set to "19"

Note 2: All other modes tested at output power set to a value of "20"

Note 2: Antenna gain applied = 3.2 dBm

Test Date: October 3, 2018

Signature: Tested By: Afzal Fazal

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

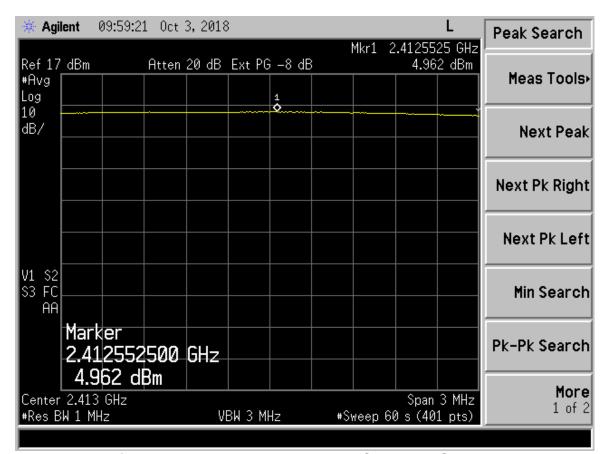



Figure 1. 2412 MHz, b mode Low Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

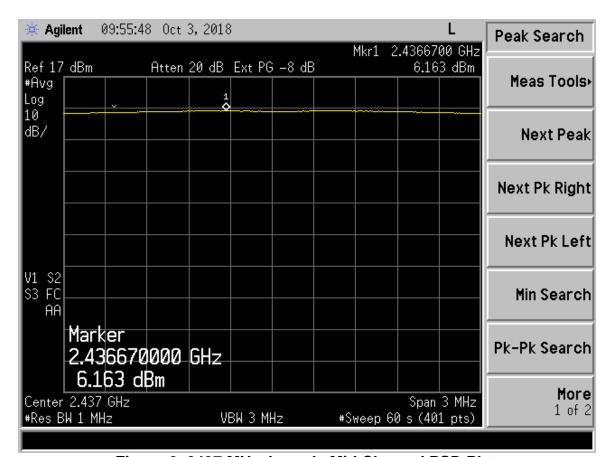



Figure 2. 2437 MHz, b mode Mid Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

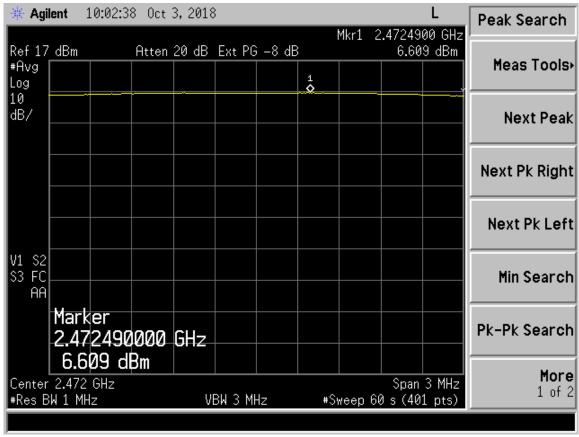



Figure 3. 2472 MHz, b mode High Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

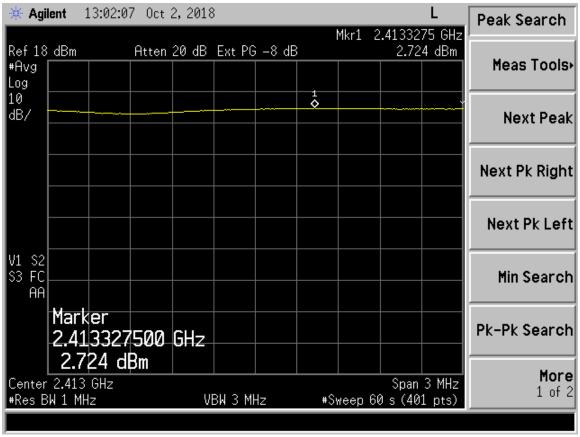



Figure 4. 2412 MHz, g mode Low Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

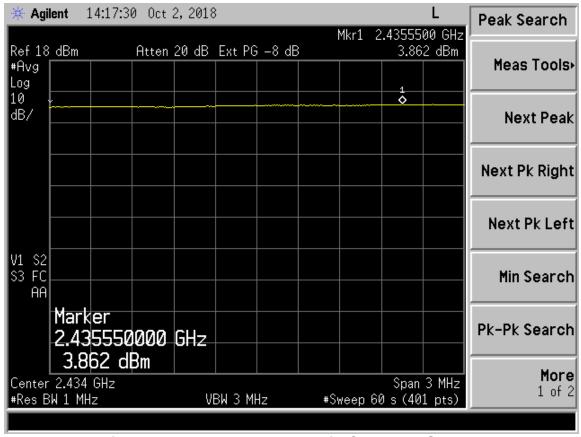



Figure 5. 2437 MHz, g mode Mid Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

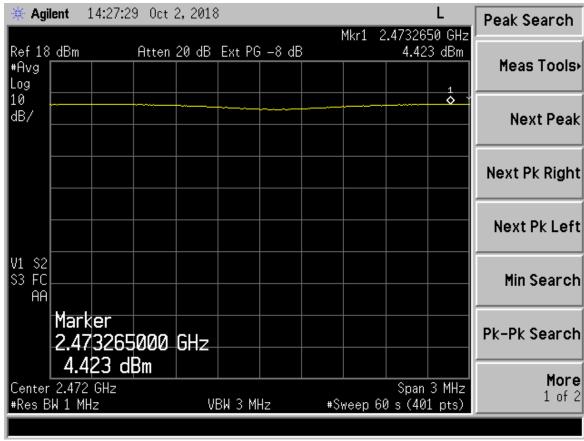



Figure 6. 2472 MHz, g mode High Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

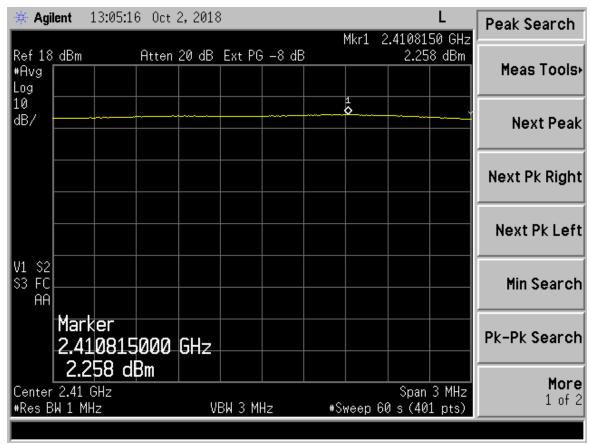



Figure 7. 2412 MHz, n mode Low Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

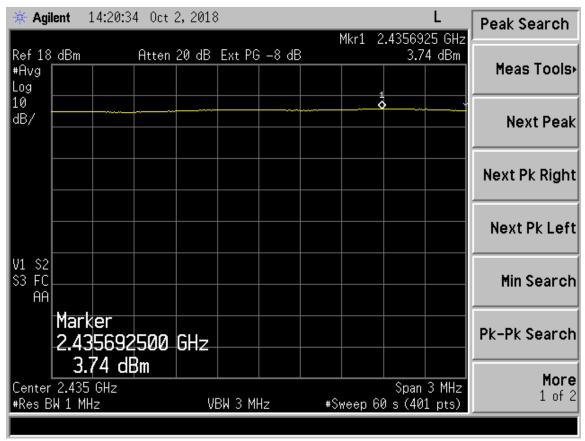



Figure 8. 2437 MHz, n mode Mid Channel PSD Plot

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

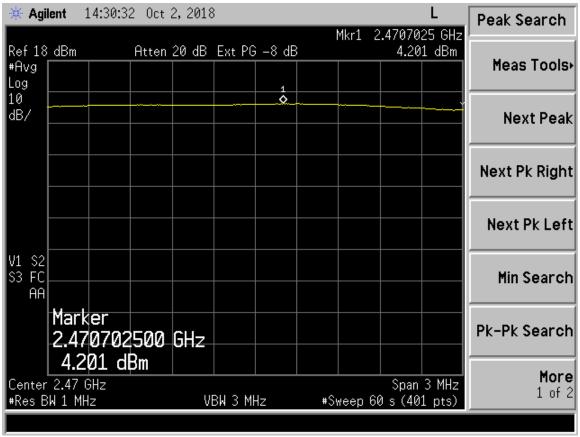



Figure 9. 2472 MHz, n mode High Channel PSD Plot

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# 5.3.4 Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence (Clause 4.3.1.4)

The EUT uses wide band modulation other than frequency hopping Spread Spectrum (FHSS) modulation and this clause is only applicable for FHSS equipment; therefore the dwell time, minimum frequency occupation and hopping sequence measurements are not applicable.

#### 5.3.5 Hopping Frequency Separation (Clause 4.3.1.5)

The EUT uses wide band modulation other than frequency hopping Spread Spectrum (FHSS) modulation and this clause is only applicable for FHSS Equipment; therefore the Hopping Frequency Separation measurement is not applicable.

#### 5.3.6 Adaptivity (Clause 4.3.2.6)

Adaptive equipment using modulations other than FHSS is equipment that uses a mechanism by which it can adapt to its radio environment by identifying other transmissions present within its Occupied Channel Bandwidth. This equipment shall use a Detect and Avoid mechanism to perform this task.

The EUT was tested and does have a Detect and Avoid feature that meets the requirements of the test standard. A plot of the evaluation is presented below. In this case the EUT uses Non-LBT based Detect and Avoid.

Test Date: December 12, 2018

Signature: Tested By: George Yang

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

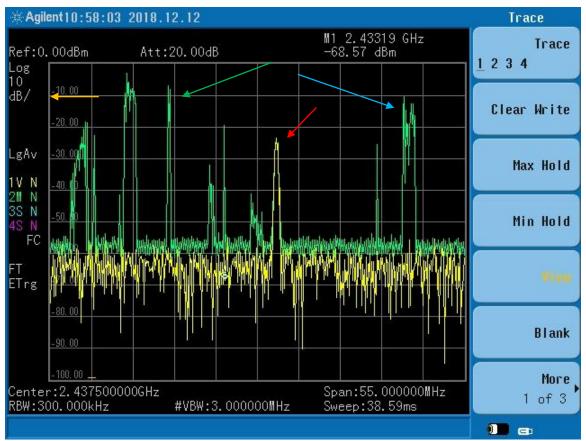



Figure 10. Adaptivity Worst Case

The Orange arrow = 2395 or 2488 MHz Unwanted signal (out of screen).
The Red arrow = 2442 MHz Interference signal.
The Green arrow = Companion device signals.
The Blue arrow = EUT's transmission signal.\*

|         | ignal mean power<br>mpanion device<br>(dBm) | Unwanted signal<br>frequency<br>(MHz)                                                                                                                                         | Unwanted CW<br>signal power (dBm) |  |  |
|---------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| -30     |                                             | 2 395 or 2 488,5                                                                                                                                                              | -35                               |  |  |
|         |                                             | (see note 1)                                                                                                                                                                  | (see note 2)                      |  |  |
| NOTE 1: | channels within the lowest frequency si     | uency shall be used for testing operating he range 2 400 MHz to 2 442 MHz, while the shall be used for testing operating channels 2 442 MHz to 2 483,5 MHz. See clause 5.4.6. |                                   |  |  |
| NOTE 2: |                                             | is the level in front of the<br>measurements, this leve<br>na assembly gain.                                                                                                  |                                   |  |  |

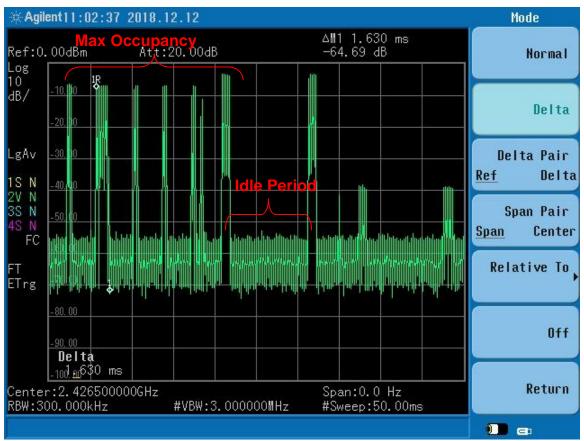



Figure 11. Dwell Time

Max time pulse = 1.630 mSec Total Dwell time = 9.78 mSec (worst case) << 40 mSec Idle Period = > 5% or 0.489 mSec

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### 5.3.7 Occupied Channel Bandwidth (Clause 4.3.2.7)

The Occupied Channel Bandwidth is the bandwidth that contains 99% of the signal. In accordance with ETSI EN 300 328 section 4.3.2.7, the Occupied Bandwidth for each hopping frequency shall fall completely within the given frequency band.

The Occupied Channel Bandwidth was measured per the procedures of ETSI EN 300 328 section 5.3.8. The center frequency was set to either the highest or lowest frequency within the allowed frequency band under test and the span was 2x the Occupied Channel bandwidth. The RBW was ~ 1 % of the span and VBW was 3x VBW. The RMS detector mode was used and the trace was set to Max Hold to allow the trace to complete. The 99 % bandwidth function of the spectrum analyser was used to measure the occupied bandwidth.

Environmental Conditions: Ambient Temperature: 25 °C Relative Humidity: 55 %

Test Date: September 28, 2018

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

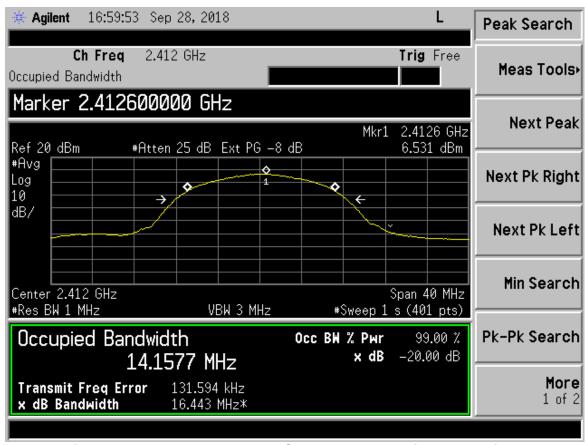



Figure 12. 2412 MHz b mode Channel 1 Occupied Bandwidth

Occupied BW= 14.1577 MHz
Center frequency 2412 MHz
Low Band-edge 2404.921 MHz

Low band-edge contained within 2400 MHz.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

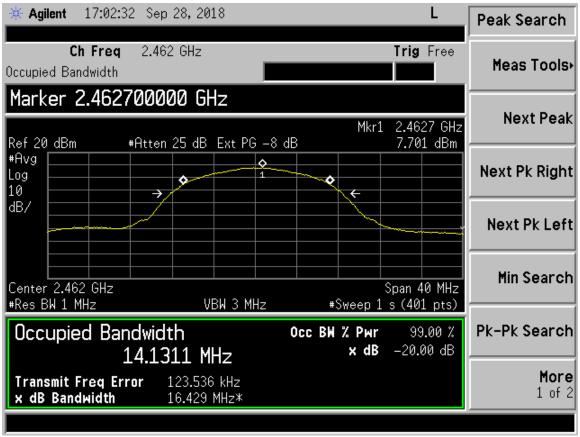



Figure 13. 2462 MHz b mode Channel 11 Occupied Bandwidth

Occupied BW= 14.1311 MHz
Center Frequency 2462 MHz
High Band-edge 2469.066 MHz

High band-edge contained within 2483.5 MHz.

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

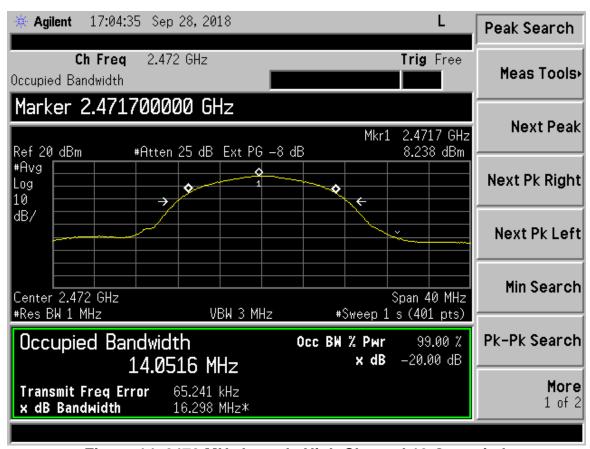



Figure 14. 2472 MHz b mode High Channel 13 Occupied

Occupied BW= 14.0516 MHz
Center frequency 2472 MHz
High Band-edge 2478.646 MHz

High band-edge contained within 2483.5 MHz.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

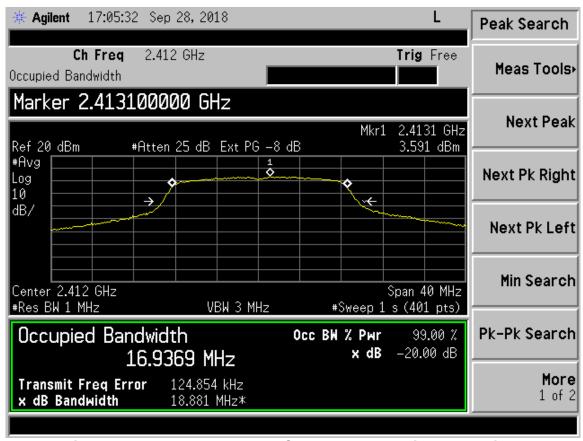



Figure 15. 2412 MHz g mode Channel 1 Occupied Bandwidth

Occupied BW= 16.9369 MHz
Center frequency 2412 MHz
Low Band-edge 2403.532 MHz

Low band-edge contained within 2400 MHz

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

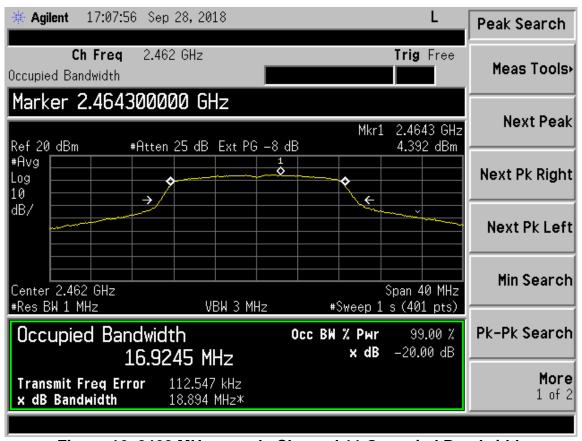



Figure 16. 2462 MHz g mode Channel 11 Occupied Bandwidth

Occupied BW= 16.9245 MHz
Center frequency 2462 MHz
High Band-edge 2470.462 MHz

High band-edge contained within 2483.5 MHz

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

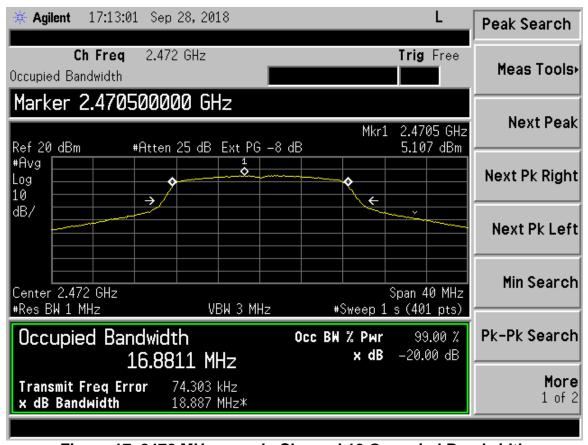



Figure 17. 2472 MHz g mode Channel 13 Occupied Bandwidth

Occupied BW= 16.8811 MHz
Center frequency 2472 MHz
High Band-edge 2480.441 MHz

High band-edge contained within 2483.5 MHz

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

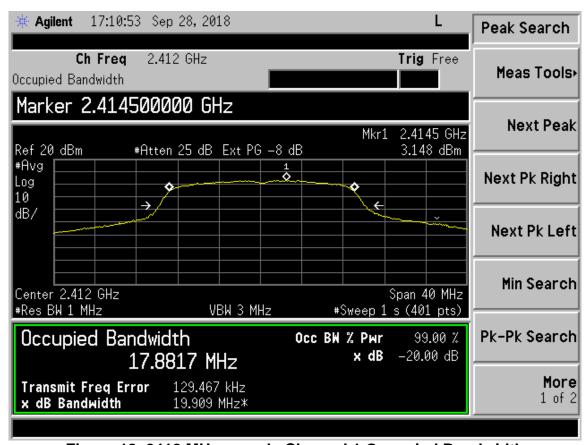



Figure 18. 2412 MHz n mode Channel 1 Occupied Bandwidth

Occupied BW= 17.8817 MHz
Center frequency 2412 MHz
Low Band-edge 2403.059 MHz

Low band-edge contained within 2400 MHz

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

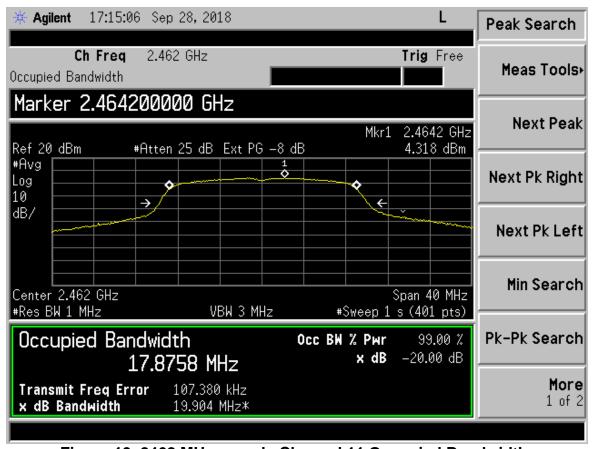



Figure 19. 2462 MHz n mode Channel 11 Occupied Bandwidth

Occupied BW= 17.8758 MHz
Center frequency 2462 MHz
High Band-edge 2470.938 MHz

High band-edge contained within 2483.5 MHz

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

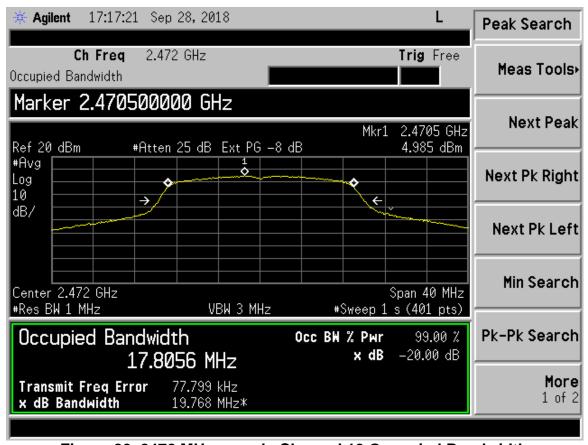



Figure 20. 2472 MHz n mode Channel 13 Occupied Bandwidth

Occupied BW= 17.8056 MHz
Center frequency 2472 MHz
High Band-edge 2480.903 MHz

High band-edge contained within 2483.5 MHz

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

### 5.3.8 Transmitter Unwanted Emissions in the Out-Of-Band Domain (Clause 4.3.2.8)

The transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in Transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions. In accordance with ETSI EN 300 328 section 4.3.2.8.3, the transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in the figure below. Within the band specified, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.7.

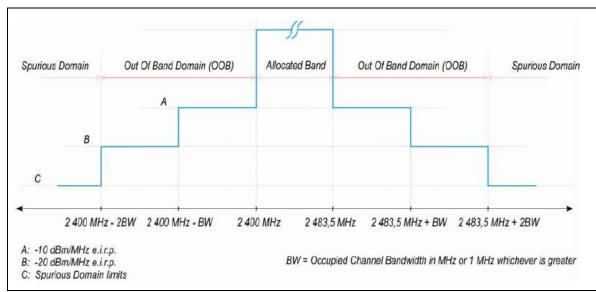



Figure 21. Transmitter Unwanted Emissions in the Out-of-Band Domain Limits

The EUT was tested at normal and extreme temperatures. Only the lowest and highest channels were evaluated for each operational mode. The Occupied Bandwidth used was 20 MHz since this is the maximum allowed bandwidth for this type of transmitter. The RF port of the EUT was directly connected to the Spectrum Analyzer. The resolution bandwidth used was 1 MHz with a video bandwidth of 3 MHz. The Peak detector was used and only the worst case emission was recorded below.

2364.40 MHz to 2382.20 MHz limit = -20 dBm/MHz 2382.20 MHz to 2400 MHz limit = -10 dBm/MHz 2483.5 MHz to 2501.39 MHz limit = -10 dBm/MHz 2501.39 MHz to 2519.28 MHz limit = -20 dBm/MHz

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

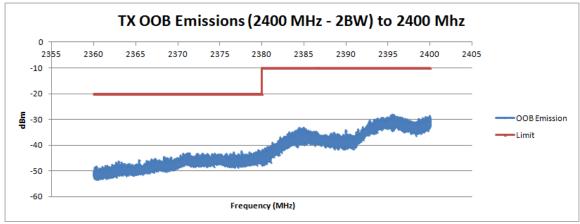



Figure 22. b mode, Low Channel TX OOB Plot 1

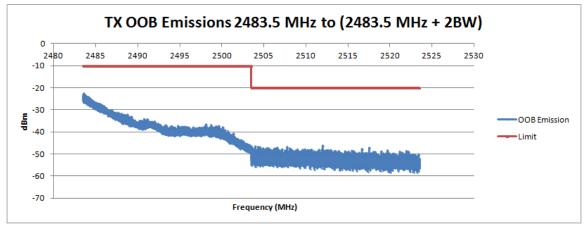



Figure 23. b mode, Low Channel TX OOB Plot 2

Test Date: September 26, 2018

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

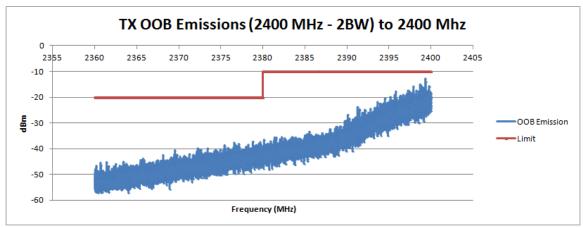



Figure 24. g mode, Low Channel TX OOB Plot 1

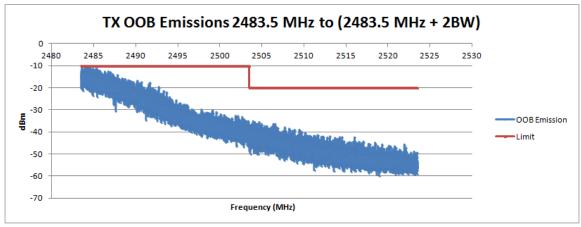



Figure 25. g mode, Low Channel TX OOB Plot 2

Test Date: September 26, 2018

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

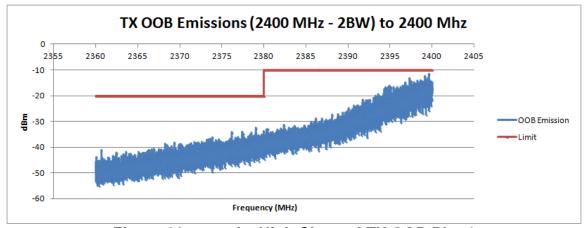



Figure 26. n mode, High Channel TX OOB Plot 1

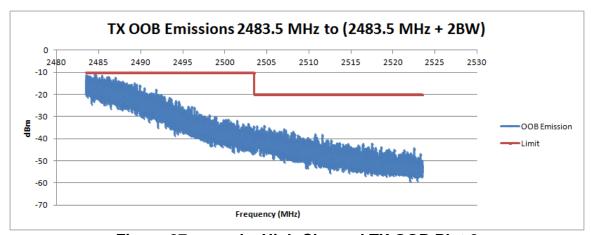



Figure 27. n mode, High Channel TX OOB Plot 2

Test Date: September 26, 2018

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

## 5.3.9 Transmitter Unwanted Emissions in the Spurious Domain (Clause 4.3.2.9)

Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and the Out-Of-Band domain when the equipment is in transmit mode, in accordance ETSI EN 300 328 section 4.3.2.9, the spurious emissions cannot be greater than the limits in the Tables following.

**Table 6. Transmitter Unwanted Emission Limits** 

| Frequency Range     | Maximum power, e.r.p. (≤ 1<br>GHz) e.i.r.p (> 1 GHz) | Bandwidth |
|---------------------|------------------------------------------------------|-----------|
| 30 MHz to 47 MHz    | -36 dBm                                              | 100 kHz   |
| 47 MHz to 74 MHz    | -54 dBm                                              | 100 kHz   |
| 74 MHz to 87.5 MHz  | -36 dBm                                              | 100 kHz   |
| 87.5 MHz to 118 MHz | -54 dBm                                              | 100 kHz   |
| 118 MHz to 174 MHz  | -36 dBm                                              | 100 kHz   |
| 174 MHz to 230 MHz  | -54 dBm                                              | 100 kHz   |
| 230 MHz to 470 MHz  | -36 dBm                                              | 100 kHz   |
| 470 MHz to 862 MHz  | -54 dBm                                              | 100 kHz   |
| 862 MHz to 1 GHz    | -36 dBm                                              | 100 kHz   |
| 1 GHz to 12.75 GHz  | -30 dBm                                              | 1 MHz     |

The following radiated measurements were performed while the EUT was operating in transmit mode:

- Fundamental and Harmonics in the Spurious Domain (refer to the tables below).
- Unwanted Emissions in the Spurious Domain. The middle channel 2437 MHz was used for these measurements (refer to the tables below).

The 3.2 dB gain dual band antenna generated the worst case emissions. The external antenna test data presented below are the test results collected using that antenna.

A conducted measurement was also performed for the unwanted emissions in the spurious domain refer to the plots below.

Note: The radio module was programmed to output at +20 dBm.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Spurious Emissions Testing performed by:

Test Date: September 26, 2018

Signature: Tested By: Afzal Fazal

Table 7. Transmitter Spurious Emissions Fundamental Signal (chip antenna

|                | b mode)                            |                                |                                       |                     |                                             |                                   |                                                                                                                             |                |                |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power<br>into<br>Substitution<br>TX Antenna<br>Corrected<br>By TX Gain<br>Relative to<br>Dipole and<br>TX Cable<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                |                                    |                                | Chai                                  | nnel 1 –            | 2412 MHz                                    |                                   |                                                                                                                             | •              |                |
| 2412.00        | 71.13                              | 70.29                          | 0.84                                  | 8.8                 | 6.7                                         | 0.0                               | 6.34                                                                                                                        | 20             | 13.66          |
|                |                                    |                                | Chai                                  | nnel 6 –            | 2437 MHz                                    |                                   |                                                                                                                             |                |                |
| 2437.00        | 76.69                              | 75.64                          | 1.05                                  | 8.8                 | 6.7                                         | 4.0                               | 10.53                                                                                                                       | 20             | 9.47           |
|                |                                    |                                | Chan                                  | nel 11 -            | - 2462 MHz                                  | 7                                 |                                                                                                                             |                |                |
| 2462.00        | 78.85                              | 79.61                          | -0.76                                 | 8.8                 | 6.7                                         | 6.0                               | 10.72                                                                                                                       | 20             | 9.28           |
|                | Channel 12 – 2467 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                                             |                |                |
| 2467.00        | 78.18                              | 79.33                          | -1.15                                 | 8.8                 | 6.7                                         | 6.0                               | 10.33                                                                                                                       | 20             | 9.67           |
|                |                                    |                                | Chan                                  | nel 13 -            | – 2472 MHz                                  | <u> </u>                          |                                                                                                                             |                |                |
| 2472.00        | 78.50                              | 78.88                          | -0.38                                 | 8.8                 | 6.7                                         | 6.0                               | 11.10                                                                                                                       | 20             | 8.90           |
| NI             | oto 1) DE I                        | Dower (dDr                     | a) into cubo                          | titution            | ontonno                                     | from cian                         | al generator                                                                                                                |                | <u> </u>       |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.00 MHz:

Maximum RX Reading (column 2)

Less Recreated Reading (column 3)

TX Gain Relative to Dipole (column 6)

RF Power into TX Antenna (column 7)

Antenna factor/Cable loss from spreadsheet factors

Corrected RF Power (column 8)

71.13 (dBuV/m)

70.29 (dBuV/m)

6.70 (dB)

0.00 (dBm)

-1.2 (dBm)

6.34 (dBm)

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Table 8. Transmitter Spurious Emissions Fundamental Signal (chip antenna – q mode)

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|                |                                    |                                | Cha                                   | nnel 1 –            | - 2412 MHz                                  |                                   |                                                                                                  |                |                |
| 2412.00        | 70.80                              | 70.29                          | 0.51                                  | 8.8                 | 6.7                                         | 0.0                               | 6.01                                                                                             | 20             | 13.99          |
|                |                                    |                                | Cha                                   | nnel 6 –            | 2437 MHz                                    |                                   |                                                                                                  |                |                |
| 2437.00        | 75.85                              | 75.64                          | 0.21                                  | 8.8                 | 6.7                                         | 4.0                               | 9.69                                                                                             | 20             | 10.31          |
|                |                                    |                                | Char                                  | nel 11 -            | - 2462 MHz                                  | 7                                 |                                                                                                  |                |                |
| 2462.00        | 78.94                              | 79.61                          | -0.67                                 | 8.8                 | 6.7                                         | 6.0                               | 10.81                                                                                            | 20             | 9.19           |
|                | Channel 12 – 2467 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                  |                |                |
| 2467.00        | 78.90                              | 79.33                          | -0.43                                 | 8.8                 | 6.7                                         | 6.0                               | 11.05                                                                                            | 20             | 8.95           |
|                |                                    |                                | Char                                  | nel 13 -            | - 2472 MHz                                  | <u>z</u>                          |                                                                                                  |                |                |
| 2472.00        | 78.02                              | 78.88                          | -0.86                                 | 8.8                 | 6.7                                         | 6.0                               | 10.62                                                                                            | 20             | 9.38           |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.00 MHz:

| Maximum RX Reading (column 2)                      | 70.80 | (dBuV/m) |
|----------------------------------------------------|-------|----------|
| Less Recreated Reading (column 3)                  | 70.29 | (dBuV/m) |
| TX Gain Relative to Dipole (column 6)              | 6.70  | (dB)     |
| RF Power into TX Antenna (column 7)                | 0.00  | (dBm)    |
| Antenna factor/Cable loss from spreadsheet factors | -1.2  | (dBm)    |
| Corrected RF Power (column 8)                      | 6.01  | (dBm)    |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Table 9. Transmitter Spurious Emissions Fundamental Signal (chip antenna – n mode)

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|                |                                    |                                | Cha                                   | nnel 1 –            | 2412 MHz                                    | ·<br>·                            |                                                                                                  |                |                |
| 2412.00        | 71.12                              | 70.29                          | 0.83                                  | 8.8                 | 6.7                                         | 0.0                               | 6.33                                                                                             | 20             | 13.67          |
|                |                                    |                                | Cha                                   | nnel 6 –            | 2437 MHz                                    |                                   |                                                                                                  |                |                |
| 2437.00        | 75.38                              | 75.64                          | -0.26                                 | 8.8                 | 6.7                                         | 4.0                               | 9.22                                                                                             | 20             | 10.78          |
|                |                                    |                                | Char                                  | nel 11 -            | - 2462 MHz                                  | <u></u>                           |                                                                                                  |                |                |
| 2462.00        | 78.81                              | 79.61                          | -0.80                                 | 8.8                 | 6.7                                         | 6.0                               | 10.68                                                                                            | 20             | 9.32           |
|                | Channel 12 – 2467 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                  |                |                |
| 2467.00        | 77.79                              | 79.33                          | -1.54                                 | 8.8                 | 6.7                                         | 6.0                               | 9.94                                                                                             | 20             | 10.06          |
|                |                                    |                                | Char                                  | nel 13              | – 2472 MHz                                  | <u>z</u>                          |                                                                                                  |                |                |
| 2472.00        | 77.39                              | 78.88                          | -1.49                                 | 8.8                 | 6.7                                         | 6.0                               | 9.99                                                                                             | 20             | 10.01          |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.00 MHz:

| Maximum RX Reading (column 2)                      | 71.12 | (dBuV/m) |
|----------------------------------------------------|-------|----------|
| Less Recreated Reading (column 3)                  | 70.29 | (dBuV/m) |
| TX Gain Relative to Dipole (column 6)              | 6.70  | (dB)     |
| RF Power into TX Antenna (column 7)                | 0.00  | (dBm)    |
| Antenna factor/Cable loss from spreadsheet factors | -1.2  | (dBm)    |
| Corrected RF Power (column 8)                      | 6.33  | (dBm)    |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Table 10. Transmitter Spurious Emissions Fundamental Signal (external antenna – b mode)

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|                |                                    |                                |                                       |                     | - 2412 MHz                                  |                                   |                                                                                                  | 1              |                |
| 2412.00        | 78.05                              | 77.92                          | 0.13                                  | 8.8                 | 6.7                                         | 5.0                               | 10.59                                                                                            | 20             | 9.41           |
|                |                                    |                                | Chai                                  | nnel 6 –            | - 2437 MHz                                  |                                   |                                                                                                  |                |                |
| 2437.00        | 79.61                              | 81.96                          | -2.35                                 | 8.8                 | 6.7                                         | 7.0                               | 10.10                                                                                            | 20             | 9.90           |
|                |                                    |                                | Chan                                  | nel 11 -            | – 2462 MHz                                  | Z                                 |                                                                                                  |                |                |
| 2462.00        | 81.69                              | 81.96                          | -0.27                                 | 8.8                 | 6.7                                         | 5.0                               | 10.18                                                                                            | 20             | 9.82           |
|                |                                    |                                | Chan                                  | nel 12 -            | – 2467 MHz                                  | <u></u>                           |                                                                                                  |                |                |
| 2467.00        | 81.87                              | 81.96                          | -0.09                                 | 8.8                 | 6.7                                         | 5.0                               | 10.36                                                                                            | 20             | 9.64           |
|                |                                    |                                | Chan                                  | nel 13 -            | – 2472 MHz                                  | Z                                 |                                                                                                  |                |                |
| 2472.00        | 82.13                              | 81.76                          | 0.37                                  | 8.8                 | 6.7                                         | 5.0                               | 10.82                                                                                            | 20             | 9.18           |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna

factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.00 MHz:

Maximum RX Reading (column 2)

Less Recreated Reading (column 3)

TX Gain Relative to Dipole (column 6)

RF Power into TX Antenna (column 7)

Antenna factor/Cable loss from spreadsheet factors

Corrected RF Power (column 8)

78.05 (dBuV/m)

6.70 (dB)

5.0 (dBm)

-1.24 (dBm)

10.59 (dBm)

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Model:

Table 11. Transmitter Spurious Emissions Fundamental Signal (external antenna – g mode)

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|                |                                    |                                | Chai                                  | nnel 1 –            | 2412 MHz                                    |                                   |                                                                                                  |                |                |
| 2412.00        | 77.89                              | 77.92                          | -0.03                                 | 8.8                 | 6.7                                         | 5.0                               | 10.43                                                                                            | 20             | 9.57           |
|                |                                    |                                | Chai                                  | nnel 6 –            | - 2437 MHz                                  |                                   |                                                                                                  |                |                |
| 2437.00        | 79.80                              | 81.96                          | -2.16                                 | 8.8                 | 6.7                                         | 7.0                               | 10.29                                                                                            | 20             | 9.71           |
|                |                                    |                                | Chan                                  | nel 11 -            | – 2462 MHz                                  | 7                                 |                                                                                                  |                |                |
| 2462.00        | 81.72                              | 81.96                          | -0.24                                 | 8.8                 | 6.7                                         | 5.0                               | 10.21                                                                                            | 20             | 9.79           |
|                | Channel 12 – 2467 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                  |                |                |
| 2467.00        | 81.39                              | 81.96                          | -0.57                                 | 8.8                 | 6.7                                         | 5.0                               | 9.88                                                                                             | 20             | 10.12          |
|                | Channel 13 – 2472 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                  |                |                |
| 2472.00        | 82.03                              | 81.76                          | 0.27                                  | 8.8                 | 6.7                                         | 5.0                               | 10.72                                                                                            | 20             | 9.28           |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.00 MHz:

| Maximum RX Reading (column 2)                      | 77.89 | (dBuV/m) |
|----------------------------------------------------|-------|----------|
| Less Recreated Reading (column 3)                  | 77.92 | (dBuV/m) |
| TX Gain Relative to Dipole (column 6)              | 6.70  | (dB)     |
| RF Power into TX Antenna (column 7)                | 5.0   | (dBm)    |
| Antenna factor/Cable loss from spreadsheet factors | -1.24 | (dBm)    |
| Corrected RF Power (column 8)                      | 10.43 | (dBm)    |
|                                                    |       |          |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Table 12. Transmitter Spurious Emissions Fundamental Signal (external antenna – n mode)

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|                |                                    |                                | Cha                                   | nnel 1 –            | - 2412 MHz                                  |                                   |                                                                                                  |                |                |
| 2412.00        | 76.77                              | 77.92                          | -1.15                                 | 8.8                 | 6.7                                         | 5.0                               | 9.31                                                                                             | 20             | 10.69          |
|                |                                    |                                | Cha                                   | nnel 6 –            | - 2437 MHz                                  |                                   |                                                                                                  |                |                |
| 2437.00        | 78.01                              | 81.96                          | -3.95                                 | 8.8                 | 6.7                                         | 7.0                               | 8.50                                                                                             | 20             | 11.50          |
|                |                                    |                                | Char                                  | nel 11 -            | – 2462 MHz                                  | 7                                 |                                                                                                  |                |                |
| 2462.00        | 79.46                              | 81.96                          | -2.50                                 | 8.8                 | 6.7                                         | 5.0                               | 7.95                                                                                             | 20             | 12.05          |
|                | Channel 12 – 2467 MHz              |                                |                                       |                     |                                             |                                   |                                                                                                  |                |                |
| 2467.00        | 79.89                              | 81.96                          | -2.07                                 | 8.8                 | 6.7                                         | 5.0                               | 8.38                                                                                             | 20             | 11.62          |
|                |                                    |                                | Char                                  | nel 13 -            | – 2472 MHz                                  | Z                                 |                                                                                                  |                |                |
| 2472.00        | 79.74                              | 81.76                          | -2.02                                 | 8.8                 | 6.7                                         | 5.0                               | 8.43                                                                                             | 20             | 11.57          |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2412.5 MHz:

| Maximum RX Reading (column 2)                      | 76.77 | (dBuV/m) |
|----------------------------------------------------|-------|----------|
| Less Recreated Reading (column 3)                  | 77.92 | (dBuV/m) |
| TX Gain Relative to Dipole (column 6)              | 6.70  | (dB)     |
| RF Power into TX Antenna (column 7)                | 5.0   | (dBm)    |
| Antenna factor/Cable loss from spreadsheet factors | -1.24 | (dBm)    |
| Corrected RF Power (column 8)                      | 9.31  | (dBm)    |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

04 = 4 (15 ) 1/ )

**Table 13. Transmitter Unwanted Emissions in Spurious Domain - Vertical** 

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
| 31.31          | 61.51                              | 59.12                          | 2.39                                  | -13.8               | -13.8                                       | -42.0                             | -53.55                                                                                           | -36            | 17.55          |
| 58.28          | 60.88                              | 61.97                          | -1.09                                 | -3.8                | -3.8                                        | -55.0                             | -60.03                                                                                           | -54            | 6.03           |
| 118.24         | 63.43                              | 63.73                          | -0.30                                 | 0.3                 | 0.3                                         | -42.0                             | -42.22                                                                                           | -36            | 6.22           |
| 134.76         | 60.82                              | 60.80                          | 0.02                                  | 0.6                 | 0.6                                         | -50.0                             | -49.65                                                                                           | -36            | 13.65          |
| 188.52         | 54.99                              | 56.37                          | -1.38                                 | 0.6                 | 0.6                                         | -59.0                             | -60.09                                                                                           | -54            | 6.09           |
| 213.33         | 65.55                              | 67.46                          | -1.91                                 | 5.1                 | 5.1                                         | -63.0                             | -60.12                                                                                           | -54            | 6.12           |
| 219.00         | 66.69                              | 67.26                          | -0.57                                 | 5.5                 | 5.5                                         | -65.0                             | -60.38                                                                                           | -54            | 6.38           |
| 263.00         | 60.06                              | 58.11                          | 1.95                                  | 5.7                 | 5.7                                         | -52.0                             | -44.71                                                                                           | -36            | 8.71           |
| 1566.00        | 59.77                              | 61.78                          | -2.01                                 | 8.9                 | 8.9                                         | -42.0                             | -36.07                                                                                           | -30            | 6.07           |
| 2975.00        | 53.47                              | 51.88                          | 1.59                                  | 10.0                | 10.0                                        | -48.0                             | -37.83                                                                                           | -30            | 7.83           |
| 3030.00        | 51.96                              | 53.41                          | -1.45                                 | 9.4                 | 9.4                                         | -43.0                             | -36.43                                                                                           | -30            | 6.43           |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 31.31 MHz:

| Maximum R    | (Reading (column 2)                    | 61.51  | (dBuV/m) |
|--------------|----------------------------------------|--------|----------|
| Less Recrea  | ed Reading (column 3)                  | 59.12  | (dBuV/m) |
| TX Gain Rela | tive to Dipole (column 6)              | -13.80 | (dB)     |
| RF Power int | o TX Antenna (column 7)                | -42.00 | (dBm)    |
| Antenna fact | or/Cable loss from spreadsheet factors | -0.14  | (dBm)    |
| Corrected RI | Power (column 8)                       | -53.55 | (dBm)    |
|              |                                        |        |          |

2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Customer: Inventek Systems ISM4343-X Model:

ETSI EN 300 328 V2.1.1 (2016-11)

Table 14. Transmitter Unwanted Emissions in Spurious Domain - Horizontal

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
| 58.57          | 57.22                              | 55.78                          | 1.44                                  | -4.8                | -4.8                                        | -57.0                             | -60.50                                                                                           | -54            | 6.50           |
| 120.20         | 59.94                              | 61.64                          | -1.70                                 | 1.0                 | 1.0                                         | -55.0                             | -55.92                                                                                           | -36            | 19.92          |
| 128.00         | 62.05                              | 59.84                          | 2.21                                  | 0.9                 | 0.9                                         | -57.0                             | -54.11                                                                                           | -36            | 18.11          |
| 192.20         | 45.62                              | 43.81                          | 1.81                                  | 1.6                 | 1.6                                         | -70.0                             | -66.90                                                                                           | -54            | 12.90          |
| 213.330        | 64.01                              | 66.74                          | -2.73                                 | 5.0                 | 5.0                                         | -62.0                             | -60.04                                                                                           | -54            | 6.04           |
| 216.630        | 66.71                              | 68.37                          | -1.66                                 | 5.3                 | 5.3                                         | -64.0                             | -60.67                                                                                           | -54            | 6.67           |
| 251.900        | 64.76                              | 66.69                          | -1.93                                 | 5.8                 | 5.8                                         | -50.0                             | -46.49                                                                                           | -36            | 10.49          |
| 1975.00        | 50.77                              | 51.47                          | -0.70                                 | 9.1                 | 9.1                                         | -46.0                             | -38.70                                                                                           | -30            | 8.70           |
| 2975.00        | 54.30                              | 56.43                          | -2.13                                 | 10.0                | 10.0                                        | -43.0                             | -36.51                                                                                           | -30            | 6.51           |
| 3053.00        | 51.91                              | 50.86                          | 1.05                                  | 9.5                 | 9.5                                         | -46.0                             | -36.89                                                                                           | -30            | 6.89           |

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors.

Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 58.57 MHz:

| Maximum RX Reading (column 2)                      | 57.22  | (dBuV/m) |
|----------------------------------------------------|--------|----------|
| Less Recreated Reading (column 3)                  | 55.78  | (dBuV/m) |
| TX Gain Relative to Dipole (column 6)              | -4.80  | (dB)     |
| RF Power into TX Antenna (column 7)                | -57.00 | (dBm)    |
| Antenna factor/Cable loss from spreadsheet factors | -0.14  | (dBm)    |
| Corrected RF Power (column 8)                      | -60.50 | (dBm)    |
|                                                    |        |          |

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

Conducted Spurious Emissions Testing performed by:

Test Date: October 1, 2018

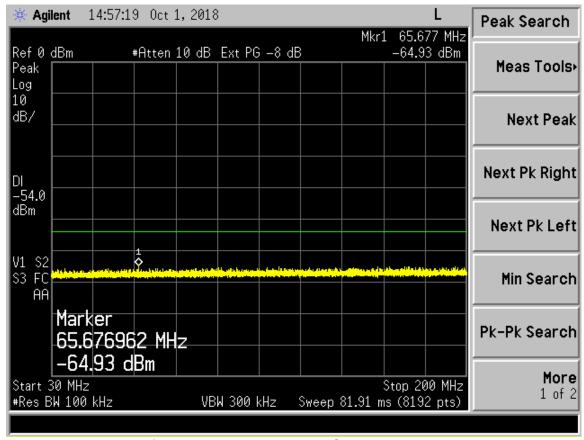



Figure 28. 802.11b, Low Channel, Plot 1

Model:

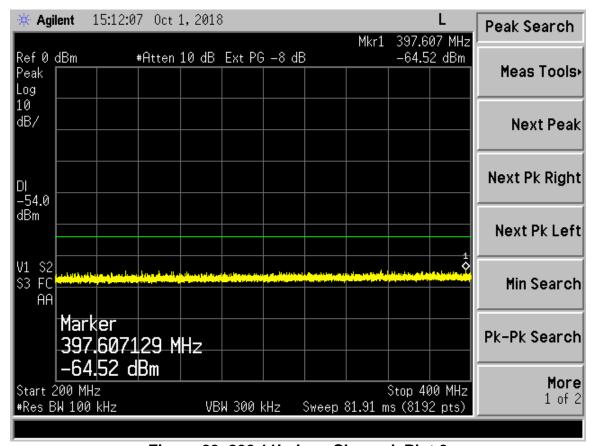



Figure 29. 802.11b, Low Channel, Plot 2

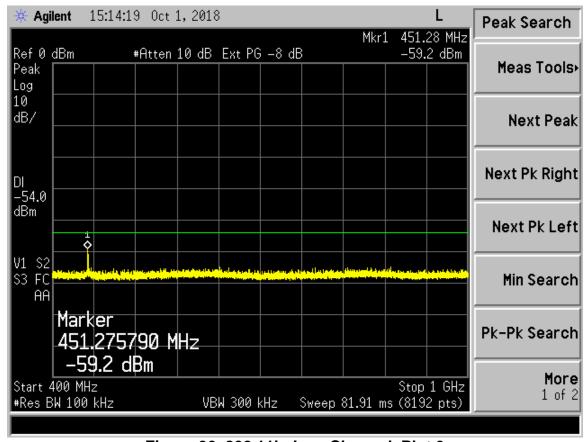



Figure 30. 802.11b, Low Channel, Plot 3

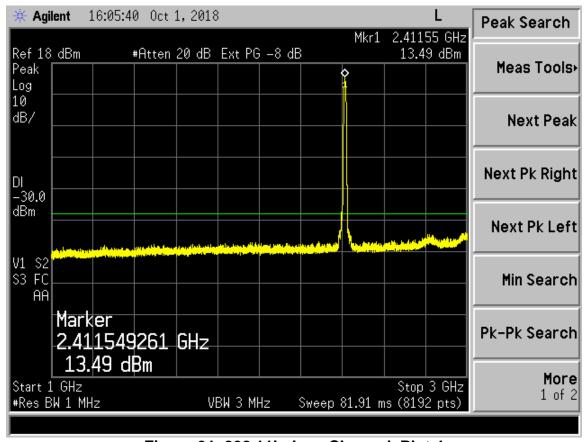



Figure 31. 802.11b, Low Channel, Plot 4

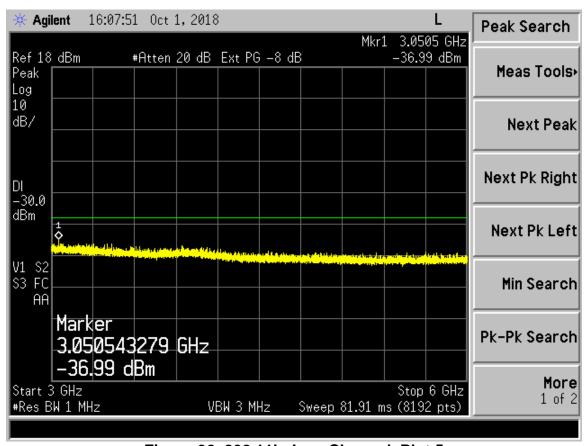



Figure 32. 802.11b, Low Channel, Plot 5

Model:

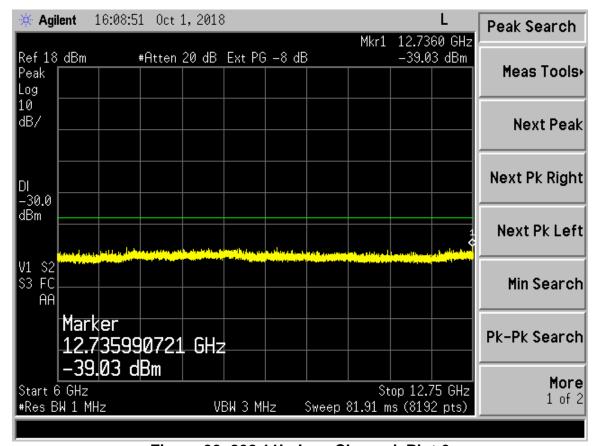



Figure 33. 802.11b, Low Channel, Plot 6

Model:

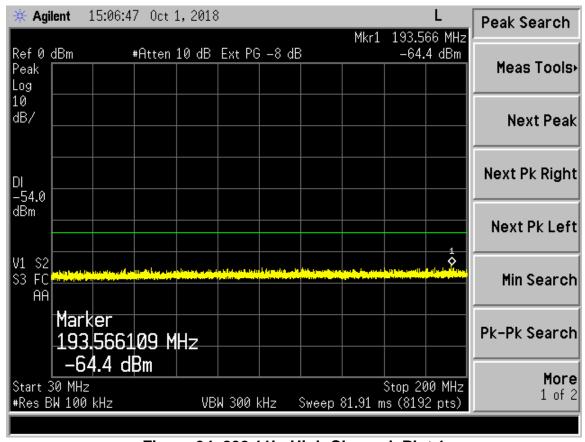



Figure 34. 802.11b, High Channel, Plot 1

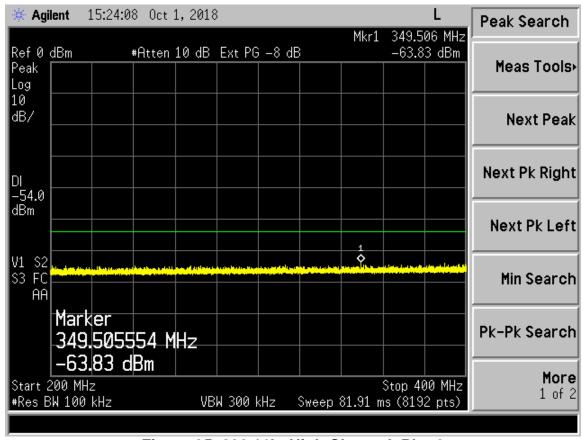



Figure 35. 802.11b, High Channel, Plot 2

Model:

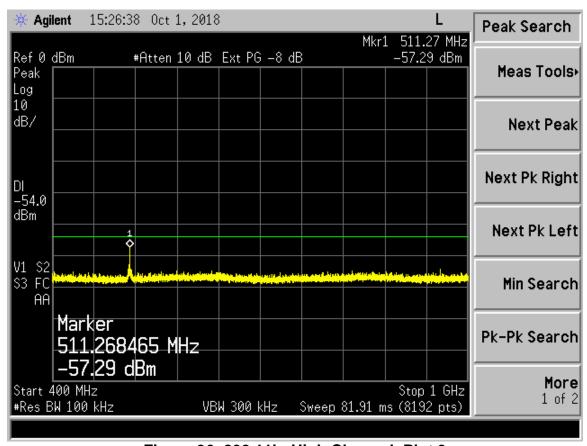



Figure 36. 802.11b, High Channel, Plot 3

Model:

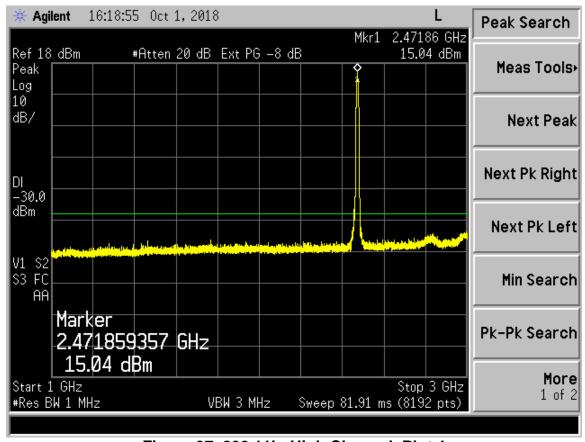



Figure 37. 802.11b, High Channel, Plot 4

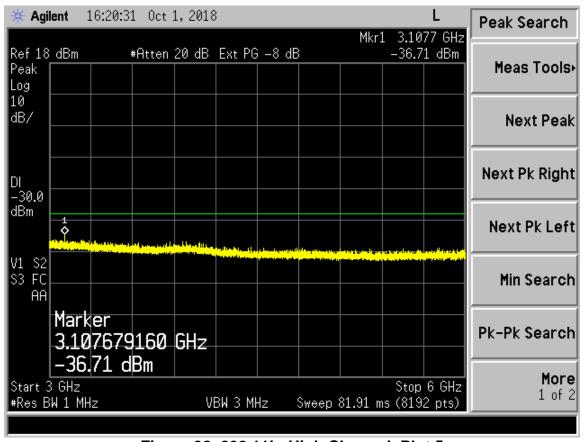



Figure 38. 802.11b, High Channel, Plot 5

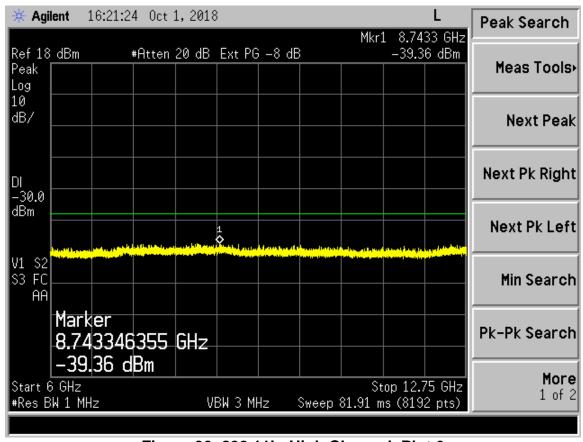



Figure 39. 802.11b, High Channel, Plot 6

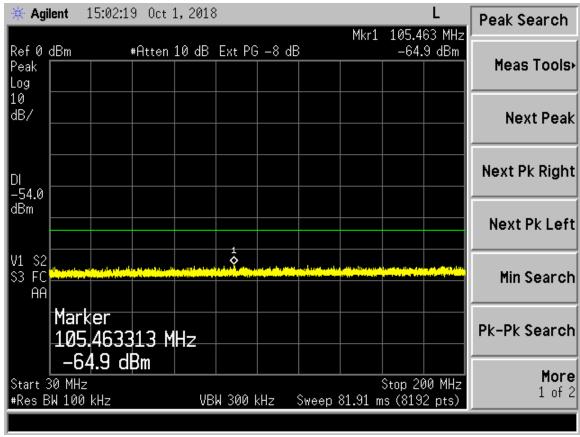



Figure 40. 802.11g, Low Channel, Plot 1

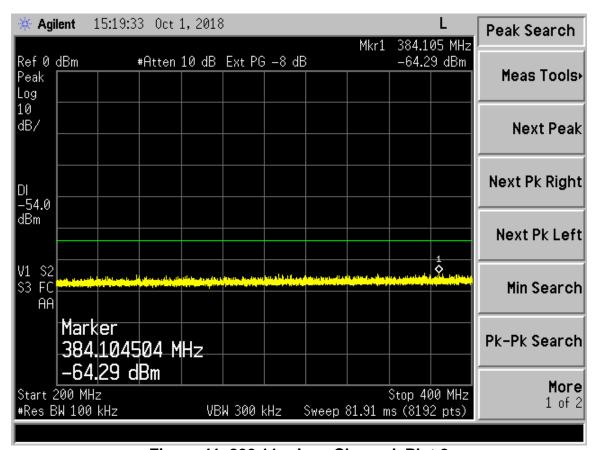



Figure 41. 802.11g, Low Channel, Plot 2

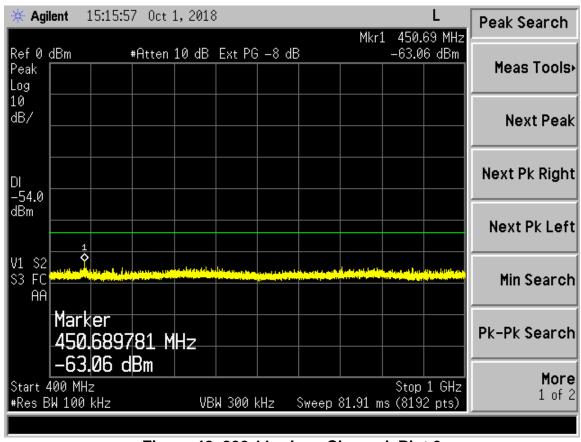



Figure 42. 802.11g, Low Channel, Plot 3

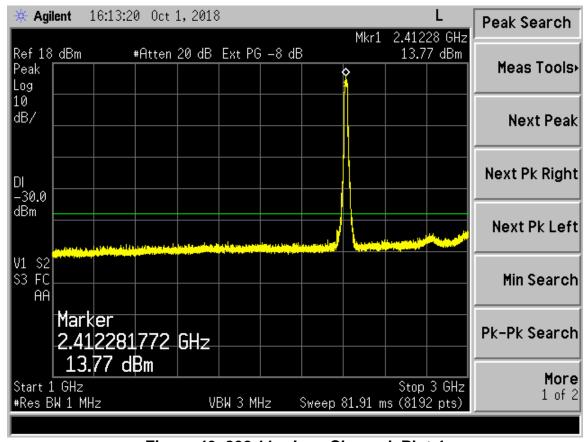



Figure 43. 802.11g, Low Channel, Plot 4

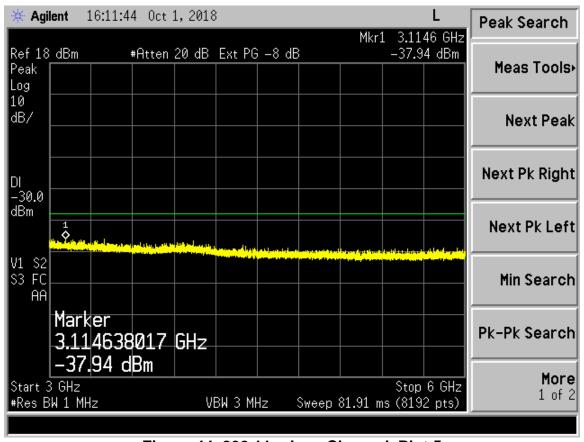



Figure 44. 802.11g, Low Channel, Plot 5

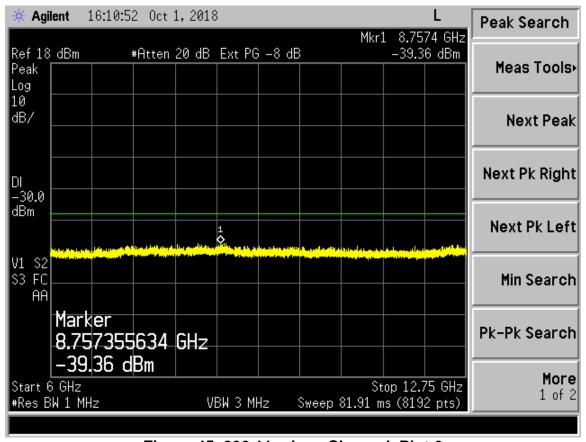



Figure 45. 802.11g, Low Channel, Plot 6

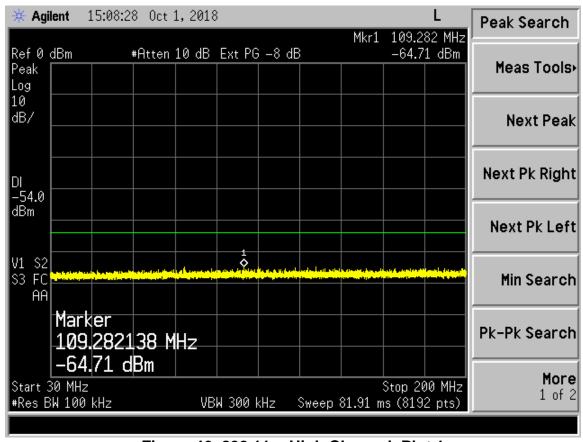



Figure 46. 802.11g, High Channel, Plot 1

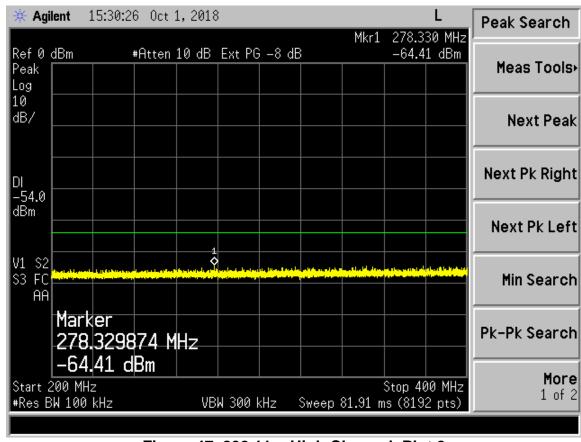



Figure 47. 802.11g, High Channel, Plot 2

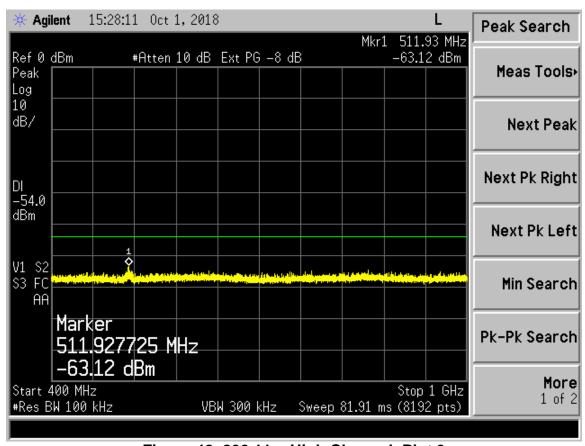



Figure 48. 802.11g, High Channel, Plot 3

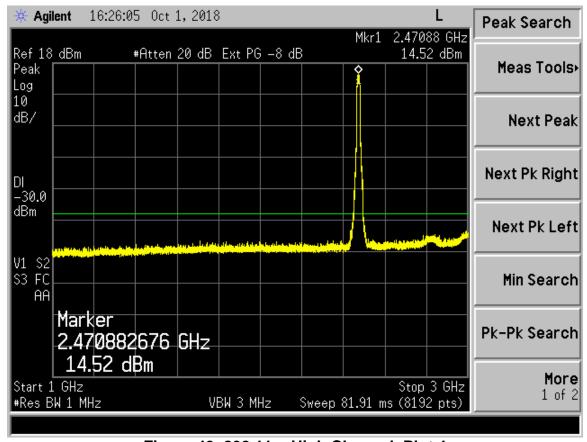



Figure 49. 802.11g, High Channel, Plot 4

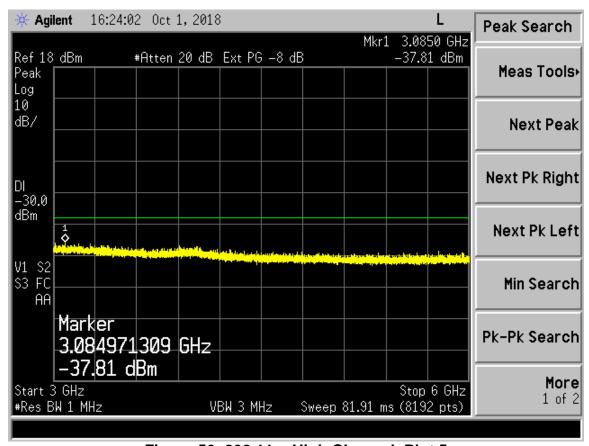



Figure 50. 802.11g, High Channel, Plot 5

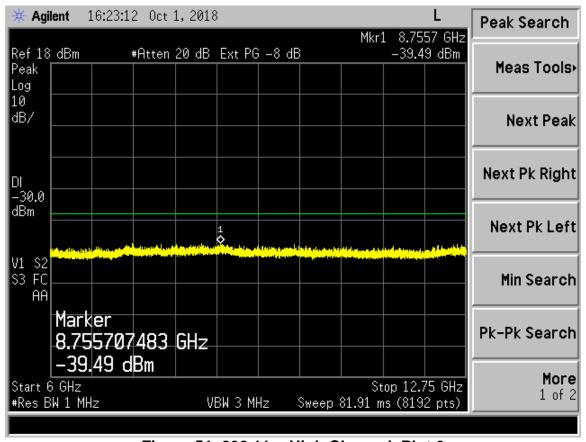



Figure 51. 802.11g, High Channel, Plot 6

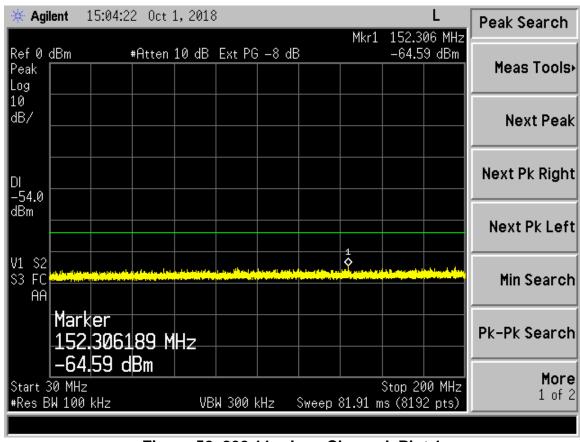



Figure 52. 802.11n, Low Channel, Plot 1

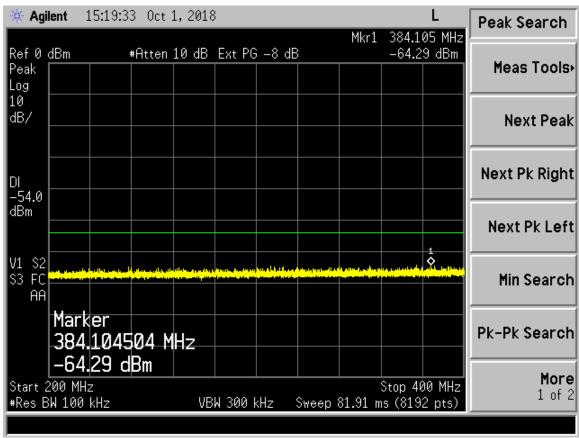



Figure 53. 802.11n, Low Channel, Plot 2

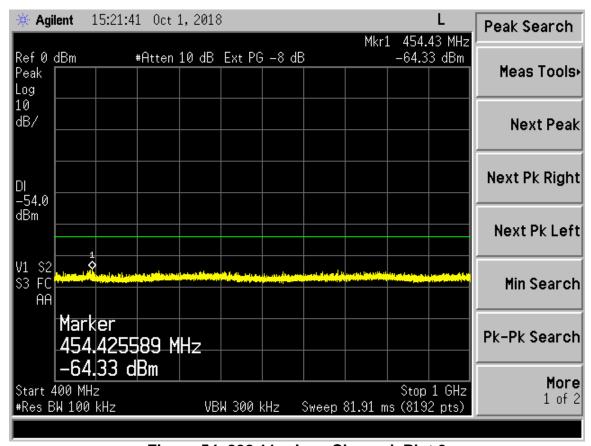



Figure 54. 802.11n, Low Channel, Plot 3

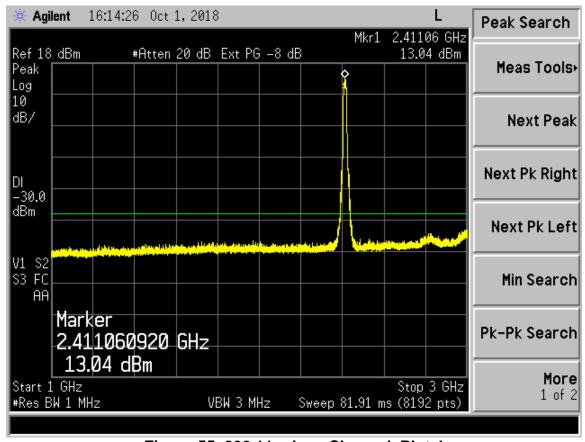



Figure 55. 802.11n, Low Channel, Plot 4

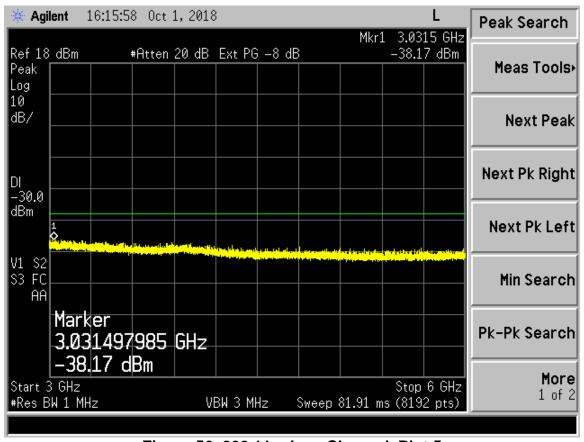



Figure 56. 802.11n, Low Channel, Plot 5



Figure 57. 802.11n, Low Channel, Plot 6

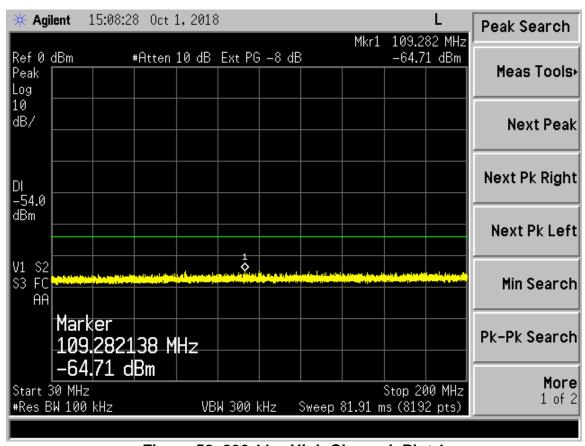



Figure 58. 802.11n, High Channel, Plot 1

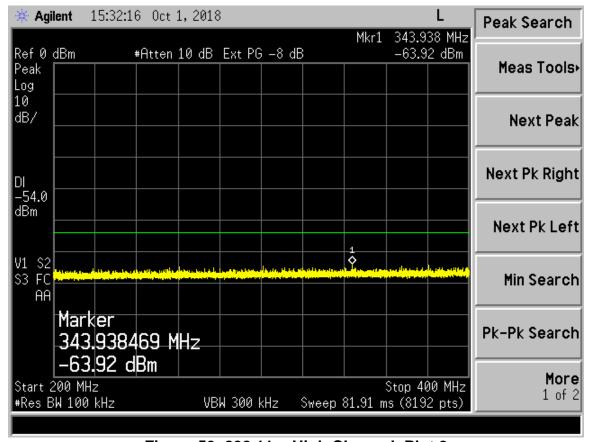



Figure 59. 802.11n, High Channel, Plot 2

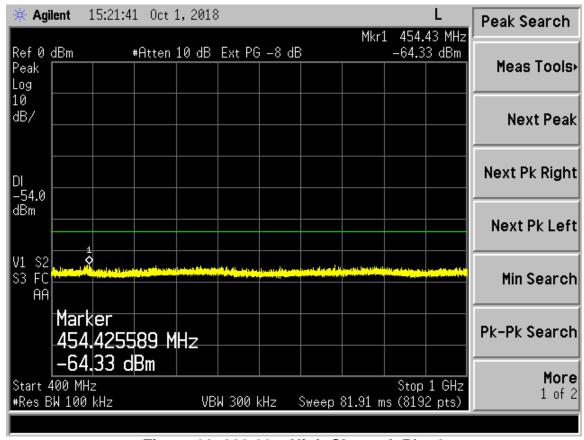



Figure 60. 802.11n, High Channel, Plot 3

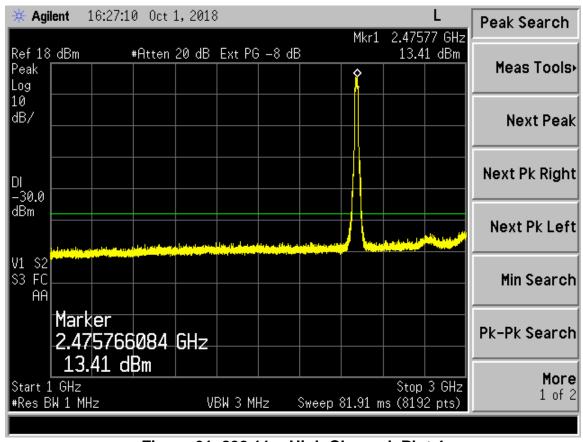



Figure 61. 802.11n, High Channel, Plot 4

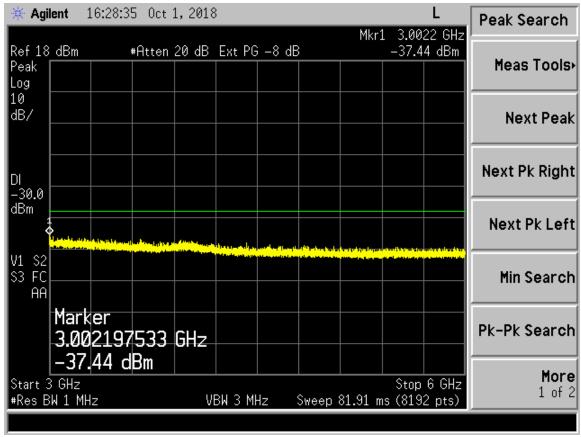



Figure 62. 802.11n, High Channel, Plot 5

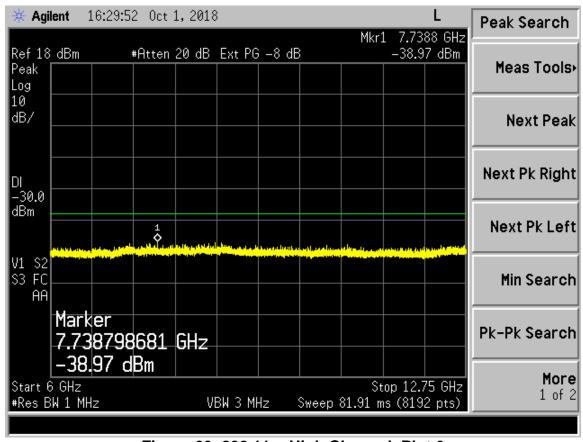



Figure 63. 802.11n, High Channel, Plot 6

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

## 5.3.10 Receiver Unwanted Emissions in the Spurious (Clause 5.4.10)

Receiver spurious emissions are the emissions at any frequency when the equipment is in receive mode. In accordance ETSI EN 300 328 section 4.3.2.11, the spurious emissions cannot be greater than the limits in the Tables following

**Table 15. Spurious Emissions Limits for Receivers** 

| Frequency Range    | Maximum Power | Bandwidth |  |
|--------------------|---------------|-----------|--|
| 30 MHz to 1 GHz    | -57 dBm       | 100 kHz   |  |
| 1 GHz to 12.75 GHz | -47 dBm       | 1 MHz     |  |

Table 16. Transmitter Unwanted Emissions in Spurious Domain - Horizontal

| Freq.<br>(MHz) | Maximum<br>RX<br>Reading<br>(dBuV) | Recreated<br>Reading<br>(dBuV) | Difference<br>Column<br>A – B<br>(dB) | TX<br>Gain<br>(dBi) | TX Gain<br>Relative<br>to<br>Dipole<br>(dB) | RF<br>Power<br>into TX<br>Antenna | RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|
|----------------|------------------------------------|--------------------------------|---------------------------------------|---------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------|

No emissions seen 6 dB above the noise floor.

Sample calculation: N/A

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

## 5.3.11 Receiver Blocking (Clause 5.4.11)

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation in the presence of an unwanted signal (blocking signal) at frequencies other than those of the operating band. In accordance with ETSI EN 300 328 section 4.3.2.11.

The EUT is categorized as Receiver Category 1 equipment.

Table 17. Receiver Blocking Parameters for Receiver Category 1 Equipment

| Wanted signal mean<br>power from companion<br>device (dBm) | Blocking signal<br>frequency<br>(MHz)                          | Blocking<br>signal power<br>(dBm)<br>(see note 2) | Type of blocking<br>signal |
|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|----------------------------|
| P <sub>min</sub> + 6 dB                                    | 2 380<br>2 503,5                                               | -53                                               | CW                         |
| P <sub>min</sub> + 6 dB                                    | 2 300<br>2 330<br>2 360                                        | -47                                               | CW                         |
| P <sub>min</sub> + 6 dB                                    | 2 523,5<br>2 553,5<br>2 583,5<br>2 613,5<br>2 643,5<br>2 673,5 | -47                                               | CW                         |

NOTE 1: P<sub>min</sub> is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Test Date: November 16, 2018

Signature: Tested By: Mark Afroozi

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

The measurements were performed at normal test conditions. The EUT uses wide band modulation other than frequency hopping Spread Spectrum (FHSS) modulation. The EUT was tested first while receiving on the lowest channel and then again while receiving on the highest channel. The system has only one receiver chain. The procedures in clause 5.4.11.2.1 were followed for this test. The test results are provided below.

Antenna Gain: +3.2 dBi

P<sub>min</sub> = Threshold level of RX and TX communication link.

FHSS: No, the EUT was programmed to receive first on the lowest channel then on the highest channel.

Table 18. Blocking Signal Test Results

| Wanted Signal<br>Mean Power | Blocking Signal Frequency (MHz)  Blockin Signal Po Limit (dB |                           | Actual<br>Blocking<br>Signal Power<br>(dBm) |
|-----------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------------|
| Pmin + 6 dBm                | 2380                                                         | -53 + max antenna<br>gain | > -30 dBm                                   |
| Pmin + 6 dBm                | 2503.5                                                       |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2300                                                         | -47 + max antenna<br>gain | > -30 dBm                                   |
| Pmin + 6 dBm                | 2330                                                         |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2360                                                         |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2523.5                                                       | -47 + max antenna<br>gain | > -30 dBm                                   |
| Pmin + 6 dBm                | 2553.5                                                       |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2583.5                                                       |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2613.5                                                       |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2643.5                                                       |                           | > -30 dBm                                   |
| Pmin + 6 dBm                | 2673.5                                                       |                           | > -30 dBm                                   |

**Test Results:** The actual blocking signal power is greater than the required minimum level per the standard. The EUT meets these requirements.

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

## 5.4 RF Exposure

#### EN 50385:2002 MPE compliance:

The maximum output power measured is 18.01 dBm with the EUT in 802.11 b mode. This level is used to show compliance for all modes of operation.

#### **Test Results:**

| Frequency range         | Maximum<br>Output Power | Power density<br>at 0.2m<br>distance | Limit               | Result |
|-------------------------|-------------------------|--------------------------------------|---------------------|--------|
| 2412 MHz to 2462<br>MHz | 20.0 dBm                | 0.4158 W/m <sup>2</sup>              | 10 W/m <sup>2</sup> | PASS   |

Maximum Antenna Gain: 3.2 dBi = 2.09 Numeric

 $S = PG/4\pi r^2$ 

P = 20.0 dBm = 0.100 W G = 3.2 dBi = 2.09 numericr = 0.2 m

 $S = (0.100 * 2.09) / (4\pi*0.2*0.2) = 0.209 / 0.5027 = 0.4158 \text{ W/m}^2$ 

The radio meets the requirements.

Test Date: December 19, 2018

Signature: Tested By: George Yang

Model:

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

#### **6** Test Instruments

**Table 19. Test Equipment** 

| Table 19. Test Equipment |                 |                 |                          |                         |  |  |  |
|--------------------------|-----------------|-----------------|--------------------------|-------------------------|--|--|--|
| INSTRUMENT               | MODEL<br>NUMBER | MANUFACTURER    | SERIAL<br>NUMBER         | CALIBRATION<br>DUE DATE |  |  |  |
| SPECTRUM<br>ANALYZER     | E4407B          | AGILENT         | US41442935               | 8/17/2020<br>2 yr.      |  |  |  |
| SPECTRUM<br>ANALYZER     | N9342CN         | AGILENT         | SG05310114               | 7/21/2019<br>2 yr.      |  |  |  |
| SIGNAL GENERATOR         | 70004A          | HEWLETT PACKARD | 70340A                   | Verified before use     |  |  |  |
| SIGNAL GENERATOR         | 8648B           | HEWLETT PACKARD | 3642U01679               | Verified before use     |  |  |  |
| SIGNAL GENERATOR         | MG3671B         | ANRITSU         | M520731M5357<br>3/M17473 | Verified before use     |  |  |  |
| BICONICAL ANTENNA        | 3110B           | EMCO            | 9307-1431                | 10/23/2019<br>2 yr.     |  |  |  |
| BICONICAL ANTENNA        | 3110B           | EMCO            | 9306-1708                | 5/02/2019<br>2 yr.      |  |  |  |
| LOG PERIODIC<br>ANTENNA  | 3146            | EMCO            | 9110-3236                | 5/01/2019<br>2 yr.      |  |  |  |
| LOG PERIODIC<br>ANTENNA  | 3146            | EMCO            | 9305-3600                | 12/21/2018<br>Extended  |  |  |  |
| HORN ANTENNA             | SAS-571         | A.H. Systems    | 605                      | 10/18/2019<br>2 yr.     |  |  |  |
| HORN ANTENNA             | 3115            | EMCO            | 9107-3723                | 12/22/2018<br>Extended  |  |  |  |
| PRE-AMPLIFIER            | 8449B           | HEWLETT PACKARD | 3008A00480               | 6/04/2019               |  |  |  |
| PRE-AMPLIFIER            | 8447D           | HEWLETT PACKARD | 1937A02980               | 3/07/2019               |  |  |  |
| RF<br>SPLITTER/COMBINER  | ZAPD-21         | MINI-CIRCUITS   | N/A                      | Verified Before Use     |  |  |  |
| RF<br>SPLITTER/COMBINER  | ZFRSC-42        | MINI-CIRCUITS   | N/A                      | Verified Before Use     |  |  |  |
| HIGH PASS FILTER         | VHP-16          | MINI-CIRCUITS   | N/A                      | 3/7/2019                |  |  |  |
| COPPER SHIELD BOX        | N/A             | US TECH         | N/A                      | Not Required            |  |  |  |

Note 1: The calibration interval of the above test instruments is 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

Note 2: verified with calibrated equipment during test.

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X

# 7 Photographs

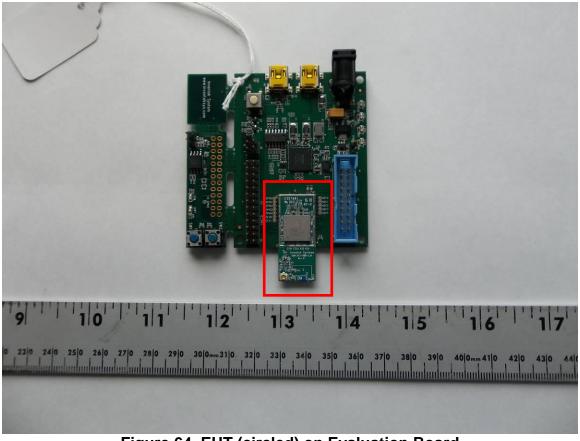



Figure 64. EUT (circled) on Evaluation Board



Figure 65. Radiated Spurious Emissions Below 200 MHz



Figure 66. Radiated Spurious Emissions Below 1000 MHz



Figure 67. Radiated Spurious Emissions Above 1000 MHz

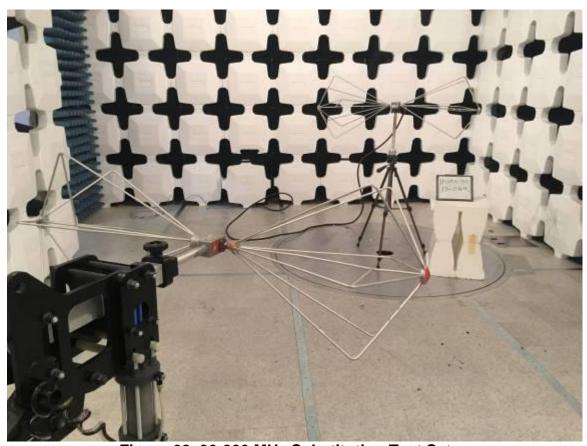



Figure 68. 30-200 MHz Substitution Test Setup



Figure 69. 200-1000 MHz Substitution Testing



Figure 70. Above 1 GHz Substitution Testing



Figure 71. Extreme Temperature Test Setup

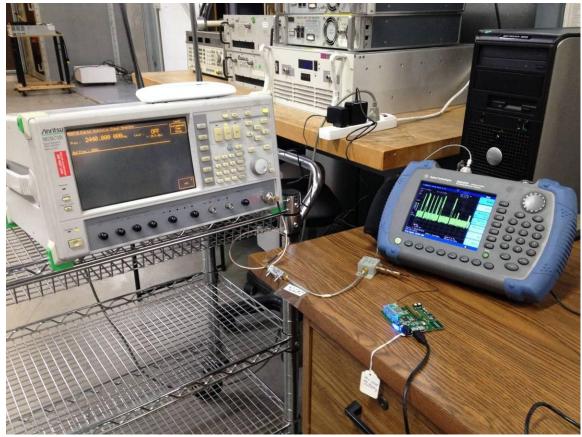



Figure 72. Adaptivity Test Setup

Issue Date: Customer: Model: ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0270 December 19, 2018 Inventek Systems ISM4343-X



Figure 73. Receiver Blocking Test Setup

Note: EUT in receive mode placed inside the Copper Shield box during testing.