

INVENTEK SYSTEMS

ISM43341
Embedded SIP Module
eS-WiFi™
802.11 a/b/g/n
BT4.0
NFC
Data Sheet

Table of Contents

1	PAR'	T NUMBER DETAIL DESCRIPTION	3
	1.1	Ordering Information	3
2	Over	view	3
3	Featu	ıres	3
4	Gene	ral Features	4
	4.1	Limitations	5
5	COM	IPLEMENTARY DOCUMENTATION	5
	5.1	Inventek Systems	5
6	SPEC	CIFICATIONS	6
		Module Architecture	
	6.2	Environmental Specifications	16
7	HAR	DWARE ELECTRICAL SPECIFICATIONS	16
	7.1.1		16
	7.1.2	6 6	17
	7.1.1	Module Pin-Out (1 of 2)	18
	7.1.2	Module Pin-Out (2 of 2)	19
	7.1.3	Module (Bottom View)	20
	7.1.4		21
	7.1.5		22
8	Produ	uct Compliance Considerations	24
9	Reflo	ow Profile	25
10		aging Information	
	10.1	MSL Level / Storage Condition	26
	10.2	Device baking requirements prior to assembly	27
11	REV	ISION CONTROL	27
12	2 CON	TACT INFORMATION	27

1 PART NUMBER DETAIL DESCRIPTION

1.1 Ordering Information

Device	Description	Ordering Number
ISM43341-L77	2.4/5G Wi-Fi, Bluetooth, NFC Sip Module	ISM43341-L77
ISM43341-SDIO- EVB	SDIO Evaluation Board	ISM43341-SDIO-EVB

2 Overview

The Inventek ISM43341 single-chip quad-radio device provides the highest level of integration for a mobile or handheld wireless system, with integrated dual band (2.4 GHz/ 5 GHz) IEEE 802.11 a/b/g and single-stream IEEE 802.11n MAC/baseband/radio, Bluetooth 4.0. It also integrates a low power NFC controller. The ISM43341 includes integrated power amplifiers, LNAs and T/R switches for the 2.4 GHz and 5 GHz WLAN bands, greatly reducing the external part count, PCB footprint, and cost of the solution.

3 Features

The ISM43341 implements the highly sophisticated Enhanced Collaborative Coexistence algorithms and hardware mechanisms, allowing for an extremely collaborative Bluetooth coexistence scheme along with coexistence support for external radios such as cellular and LTE, GPS, and Ultra-Wideband.

For the WLAN section, host interface is a SDIO v2.0 interface. An independent, high-speed UART is provided for the Bluetooth host interface. Separate independent interfaces (I²C-compatible, SPI and UART) for NFC are also provided.

IEEE 802.11x Key Features

- Dual-band 2.4 GHz and 5 GHz IEEE 802.11 a/b/g/n
- Single-stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to 150 Mbps for typical upper-layer throughput in excess of 90 Mbps.
- Supports a single 2.4 GHz antenna shared between WLAN and Bluetooth.
- Supports standard SDIO v2.0 host interface.
- OneDriver™ software architecture for easy migration from existing embedded WLAN and Bluetooth devices as well as future devices.

4 General Features

• 77 pin LGA package (13.3mm x 14.5 mm, 2 mm)

The ISM43341 supports the following WLAN, Bluetooth functions:

- IEEE 802.11a/b/g/n dual-band radio with internal Power Amplifiers, LNAs and T/R switches
- Bluetooth v4.0 with integrated Class 1 PA
- Concurrent Bluetooth, NFC and WLAN operation
- On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality
- Single and dual-antenna support
- WLAN host interface :
 - SDIO v2.0, including default and high-speed timing.
- BT host digital interface (can be used concurrently with above interface):
 - UART (up to 4 Mbps)
- ECI enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives
- I²S/PCM for BT audio
- HCI high-speed UART (H4, H4 +, H5) transport support
- Bluetooth SmartAudio® technology improves voice and music quality to headsets
- Bluetooth low power inquiry and page scan
- Bluetooth Low Energy (BLE) support
- Bluetooth Packet Loss Concealment (PLC)
- Bluetooth Wide Band Speech (WBS)

The ISM43341 supports the following NFC features:

- Support for the ISO/IEC 18092, ISO/IEC 21481, ISO/IEC 14443 Types A, B and B', Japanese Industrial Standard (JIS) (X) 6319-4 and ISO/IEC 15693 standards
- No active components required for antenna or field-power conditioning
- Individual byte framing
- Hardware-based collision detection and modulation controls
- Reader/Writer (R/W) mode
- Active and Passive Peer-to-Peer (P2P) mode
- Tag/Card Emulation mode:
 - Support for battery-enabled card emulation mode
 - Support for two levels of "residual" battery-assisted card emulation mode
 - Support for "battery-off" card emulation mode (completely powered from the field)
- Dual Signal Wire Protocol (SWP) interfaces:
 - SWP_0 with platform power management unit (PMU) power switching to a UICC SIM card
 - SWP_1 for embedded secure element or a second UICC SIM card
- Supports Application ID (AID) routing between a reader and secure element(s)

- Ability to recover card emulation personality data
- Internal low-power oscillator for periodic wake-up and mode switch operation
- Low-Power Target Detection mode for extremely low average current consumption ("sniff mode")
- NFC Forum NFC Controller Interface (NCI) for the host interface

4.1 Limitations

Inventek Systems products are not authorized for use in safety-critical applications (such as life support) where a failure of the Inventek Systems product would reasonably be expected to cause severe personal injury or death.

5 COMPLEMENTARY DOCUMENTATION

5.1 Inventek Systems

- > Evaluation Board
 - SDIO Evaluation Board Specification
 - o EVB User's Guide
 - o Drivers under NDA

6 SPECIFICATIONS

The Inventek ISM43341 single-chip device provides the highest level of integration for a wireless integrated mobile handheld system, with IEEE 802.1 a/b/g/n MAC/baseband/radio, Bluetooth 4.0, and NFC controller. It provides a small form-factor solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in size, form and function. Comprehensive power management circuitry and software ensure the system can meet the needs of high mobile devices that require minimal power consumption and reliable operations.

6.1 Module Architecture

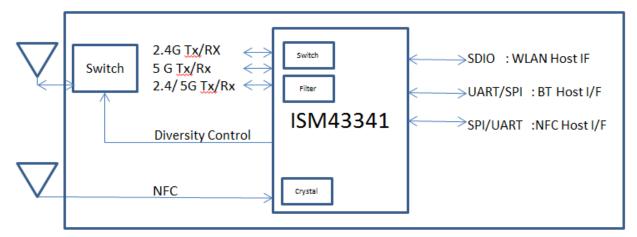


Figure 1 Inventek's ISM43341 General Block Diagram

Standards Compliance

The ISM43341 support the following standards:

- Bluetooth 4.0 (including Bluetooth Low Energy)
- IEEE 802.11n Handheld Device Class (Section 11)
- IEEE 802.11a
- IEEE 802.11b
- IEEE 802.11g
- IEEE 802.11d
- IEEE 802.11h
- IEEE 802.11i

Bluetooth 4.0 Features

The BBC supports all Bluetooth 4.0 features, with the following benefits:

- Dual-mode classic Bluetooth and classic Low Energy (BT and BLE) operation.
- Low Energy Physical Layer
- Low Energy Link Layer
- Enhancements to HCI for Low Energy
- Low Energy Direct Test mode
- AES encryption

Note: The ISM43341 is compatible with the Bluetooth Low Energy operating mode, which provides a dramatic reduction in the power consumption of the Bluetooth radio and baseband. The primary application for this mode is to provide support for low data rate devices, such as sensors and remote controls.

UART Interface

The ISM43341 shares a single UART for Bluetooth. The UART is a standard 4-wire interface (RX, TX, RTS and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.

The UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFO is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.0 UART HCI specification: H4, a custom Extended H4 and H5. The default baud rate is 115.2 Kbaud.

The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification ("Three-wire UART Transport Layer"). Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.

The ISM43341 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleet state.

Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The ISM43341 UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2% (see Table 12).

Table 12: Example of Common Baud Rates

Desired Rate	Actual Rate	Error (%)
4000000	4000000	0.00
3692000	3692308	0.01
3000000	3000000	0.00
2000000	2000000	0.00
1500000	1500000	0.00
1444444	1454544	0.70
921600	923077	0.16
460800	461538	0.16
230400	230796	0.17
115200	115385	0.16
57600	57692	0.16
38400	38400	0.00
28800	28846	0.16
19200	19200	0.00
14400	14423	0.16
9600	9600	0.00

NFC Host Interaces

The ISM43341 supports UART, I²C-compatible BSC, and SPI for the host interface physical transport layer. The host interface type is selected upon power-up boot, depending upon the state of the NFC_SPI_INT pin.

- NFC_SPI_INT pulled low The UART interface will be selected
- NFC_SPI_INT pulled high The I²C-compatible BSC slave interface will be selected
- NFC_SPI_INT floating The SPI interface will be selected.

After boot, the NFC_SPI_INT signal will function as the SPI interrupt output. During power-up book, te external host must leave this pin floating, as in the case of the tri-state or input pin. The external host must also ignore interrupts from this signal for a period of 10 milliseconds after boot-up.

The NFC host interface pins are multiplexed onto shared signals as defined in Table 22.

Table 22: NFC Host Interface Multiplexing

UART	BSC	SPI
NFC_CTS	I2C_REQ	SPI_CS
NFC_RTS	I2C_SCL	SPI_MISO
NFC_URX	-	SPI_CLK
NFC_UTX	I2C_SDA	SPI-MOSI
Pull low	Pull high	NFC_SPI_INT

Absolute Maximum Ratings

<u>Caution!</u> The absolute maximum ratings in Table 28 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

Table 28: Absolute Maximum Ratings

Rating	Symbol	Value	Unit
DC supply for VBAT and PA driver supply	VBAT	-0.5 to +6.0	V
DC supply voltage for digital I/O	VDDIO	-0.5 to 3.9	V
DC supply voltage for RF switch I/O's	VDDIO_RF	0.5 to 3.9	V
DC input supply voltage for CLDO and LNLDO1	-	0.5 to 1.575	V
DC supply voltage for RF analog	VDDRF	-0.5 to 1.32	V
DC supply voltage for core	VDDC	-0.5 to 1.32	V
WRF_TCXO_VDD	-	0.5 to 3.63	V
Maximum undershoot voltage for I/O	V undershoot	-0.5	V
Maximum Junction Temperature	Tj	125	°C

Environmental Ratings

Table 29: Environmental Ratings

Characteristic	Value	Units	Conditions/Comments
Ambient Temperature (Ta)	-30 to +85	°C	* Functional operation
Storage Temperature	-40 to +125	°C	-
Relative Humidity	Less than 60	%	<u>Storage</u>
Relative numidity	Less than 85	%	<u>Operation</u>

a. Functionality is guaranteed but specifications require slight de-rating at -40C operating temperature.

Recommended Operating Conditions and DC Characteristics

<u>Caution!</u> Functional operation is not guaranteed outside of the limits shown in Table 31 and operation outside these limits for extended periods can adversely affect long-term reliability of this devices.

Table 31: Recommended Operating Conditions and DC Characteristics

		Value				
Parameter	Symbol	Min	Typical	Max	Unit	
DC supply Voltage for VBAT	VBAT	2.3a	V-S	4.8b	V	
DC supply voltage for core	VDD	1.14	1.2	1.26	V	
DC supply voltage for RF blocks in chip	VDDRF	1.14	1.2	1.26	V	
DC supply voltage for TCXO input buffer	WRF_TCXO- VDD	1.62	1.8	1.98	V	
DC supply voltage for digital I/O	VDDIO, VDDIO_SD	1.71	-	3.63	V	
DC supply voltage for RF switch I/O's	VDDIO_RF	3.13	3.3	3.46	V	
Internal POR threshold	Vth_POR	0.4	-	0.7	V	
SDIO Interface I/O Pins						
For FDDIO_SD = 1.8V:						
Input high voltage	VIH	1.27	-	-	V	
Input low voltage	VIL	-	-	0.58	V	
Output high voltage @ 2 mA	VOH	1.4	-	-	V	
Output low voltage @ 2 mA	VOL	-	-	0.45	V	
For VDDIO_SD=3.3V:	,	1	•	•		
Input high voltage	VIH	0.625 x VDDIO	-	-	V	
Input low voltage	VIL	-	-	0.25 x VDDIO	V	
Output high voltage @ 2 mA	VOH	0.75 x VDDIO	-	-	V	
Output low voltage @ 2 mA	VOL	-	-	0.125 X VDDIO	V	

Table 31: Recommended Operating Conditions and DC Characteristics (cont.)

		Value			
Parameter	Symbol	Min	Typical	Max	Unit
Other Digital I/O Pins					
PinsFor VDDIO = 1.8V					
Input high Voltage	VIH	0.65 x VDDIO	-	-	-
Input low voltage	VIL	-	,	.035 x VDDIO	V
Output high voltage @ 2 mA	VOH	VDDIO – 0.45	•	-	V
Output low voltage @ 2 mA	VOL	-	(0.45	V
For VDDIO = 3.3V:					
Input high voltage	VIH	2.00		-	V
Input low voltage	VIL	-	-	0.80	V
Output high voltage @ 2 mA	VOH	VDDIO – 0.4	-	-	V
Output low voltage @ 2 mA	VOL	-	-	0.40	
RF Switch Control Output Pins c					
For VDDIO_RF = 3.3V					
Output high voltage	VOH	VDDIO – 0.4	-	-	V
Output low voltage	VOL	-	-	0.40	V
Input capacitance	Cin	-	-	5	pF

- a. The ISM43341 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is guaranteed only for 3.0V >VBAT >4.8V.
- b. The maximum continuous voltage is 4.8V. Voltages up to 5.5V for up to 10 seconds, cumulative duration, over the lifetime of the device are allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.
- c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA

Bluetooth RF Specifications

Note: Values in this datasheet are design goals and are subject to change based on the result of device characterization.

Unless otherwise stated, limit values apply for the conditions specified in Tabel 29: "Environmental Ratings" on page 117 and table 31: "Recommended Operating Conditions and DC Characteristics" on page 118. Typical values apply for the following conditions:

- VBAT = 3.6V
- Ambient temperature +25°C

Table 32: Bluetooth Receiver RF Specifications

Parameter	Conditions	Min	Typical	Max	Unit		
Note: The specifications in this table are measured at the Chip port output unless otherwise specified:							
General							
Frequency Range	-	2402	-	2480	MHz		
	GFSK, 0.1% BER, 1 Mbps		-93.5	-	dBm		
RX sensitivity	π/4-DQPSK, 0.01% BER, 2 Mbps		-95.5	-	dBm		
	8-DPSK, 0.01% BER, 3 Mbps	-	-89.5	-	dBm		
Input IP3	-	-16	-	-	dBm		
Maximum input at antenna	-	-	-	-20	dBm		

Table 33: Bluetooth Transmitter RF Specifications^a

Parameter	Conditions	Min	Typical	Max	Unit
General					
Frequency Range		2402	-	2480	MHz
Basic rate (GFSK) Tx power at Bluetooth	-	10.0	12.0	-	dBm
QPSK Tx Power at Bluetooth		7.0	9.0	-	dBm
8PSK Tx Power at Bluetooth		7.0	9.0	1	dBm
Power control step		2	4	6	dB

WLAN RF Specifications

Introduction

The ISM43341 includes an integrated dual-band direct conversion radio that supports either the 2.4 GHz band or the 5 GHz band. The ISM43341 does not provide simultaneous 2.4 GHz and 5 GHz operation. This section describes the RF characteristics of the 2.4 GHz and 5 GHz portions of the radio.

Note: Values in the data sheet are design goals and are subject to change based on the results of device characterization.

Unless otherwise stated, limit values apply for the condition specified in Table 29: "Environmental Ratings" on page 117 and Table 31: "Recommended Operating Conditions and DC Characteristics" on page 118. Typical values apply for the following conditions:

- VBAT = 3.6V
- Ambient temperature +25°C

2.4 GHz Band General RF Specifications

Table 37: 2.4 GHz Band General RF Specifications

Item	Conditions	Min	Typical	Max	Unit
Tx/Rx switch time	Including TX ramp down	-	-	5	μs
Rx/Tx switch time	Including TX ramp up	-	-	2	μs
Power-up and power-down ramp time	DSSS/CCK Modulations	-	-	<2	μs

WLAN 2.4 GHz Receiver Performance Specification

Table 38: WLAN 2.4 GHz Receiver Performance Specifications

Parameter	Condition/Notes	Min	Typical	Max	Unit
Frequency Range	-	2400	-	2500	MHz
	1 Mbps DSSS	-	-97.9	-	dBm
RX sensitivity (8% PER for 1024	2 Mbps DSSS	ı	-96.9	1	dBm
octet PSDU) ^a	5.5 Mbps DSSS	1	-92.5	1	dBm
	11 Mbps DSSS	ı	-90.7	1	dBm
	6 Mbps OFDM	1	-92.7	1	dBm
	9 Mbps OFDM	-	-91.4	-	dBm
	12 Mbps OFDM	-	-89	-	dBm
RX sensitivity (10% PER for 1024	18 Mbps OFDM	-	-87.4	-	dBm
octet PSDU) ^a	24 Mbps OFDM	-	-84.4	-	dBm
	36 Mbps OFDM	-	-81.7	-	dBm
	48 Mbps OFDM	-	-78.3	-	dBm
	54 Mbps OFDM	-	-77.1	-	dBm
RX sensitivity (10% PER for 4096	20 MHz channel spa	acing for all	MCS rates	(GF)	

ISM43341 Product Specification MCS0 octet PSDU)a,b Defined for default -92.6 dBm parameters: GF, 800 ns GI, and MCS 1 --89.6 dBm non-STBC. MCS 2 -87.3 dBm MCS 3 -84.7 dBm _ -MCS 4 -82 dBm MCS 5 -78.4 dBm -MCS 6 -76.9 dBm MCS 7 -75 dBm 40 MHz channel spacing for all MCS rates (GF) MCS0 -91 dBm MCS 1 -87.5 dBm RX sensitivity (10% PER for 4096 MCS 2 -85.5 dBm octet PSDU)^a,^b Defined for default MCS 3 -83 dBm parameters: GF, 800 ns GI, and MCS 4 -80 dBm non-STBC. MCS 5 -.75 dBm MCS 6 -73.5 dBm -MCS 7 --72 dBm 20 MHz channel spacing for all MCS rates (Mixed mode) MCS0 -91 dBm MCS₁ -87.9 dBm RX sensitivity (10% PER for 4096 MCS 2 -85.5 dBm octet PSDU)a,c Defined for default MCS 3 --82.8 dBm parameters: Mixed mode- 800n ns MCS 4 -79.9 dBm GI, and non-STBC. MCS 5 -76.2 dBm MCS 6 -74.6 dBm MCS 7 -72.6 dBm 40 MHz channel spacing for all MCS rates (Mixed mode) MCS0 -89.0 dBm MCS₁ -85.4 dBm RX sensitivity (10% PER for 4096 MCS 2 -83.2 dBm octet PSDU)a,b Defined for default MCS 3 -80.6 dBm parameters: GF, 800 ns GI, and MCS 4 -77.4 dBm non-STBC. MCS 5 -72.3 dBm MCS 6 -70.6 dBm

WLAN 5 GHz Receiver Performance Specifications

Note: The specifications in Table 40 are measured at the chip port input, unless otherwise specified

Table 40: WLAN 5 GHz Receiver Performance Specifications

MCS 7

Parameter	Condition/Notes	Min	Typical	Max	Unit
Frequency Range	-	4900	-	5845	MHz
RX sensitivity (10% PER for 1000	6 Mbps OFDM	-	-91.2	-	dBm
octet PSDU) ^a	9 Mbps OFDM	-	-89.9	-	dBm

-69.0

dBm

ISM43341 Product Specification 12 Mbps OFDM -87.5 dBm 18 Mbps OFDM -85.9 dBm 24 Mbps OFDM -82.9 dBm 36 Mbps OFDM -80.2 dBm _ -48 Mbps OFDM -76.8 dBm 54 Mbps OFDM -75.6 dBm 20 MHz channel spacing for all MCS rates (GF) MCS0 -91.1 dBm MCS 1 -88.1 dBm RX sensitivity (10% PER for 4096 MCS₂ -85.8 dBm _ octet PSDU)a MCS 3 -83.2 dBm Defined for default parameters: GF, MCS 4 -80.5 dBm 800 ns GI, and non-STBC. MCS 5 76.9 dBm 75.4 MCS 6 dBm MCS 7 -73.5 dBm 40 MHz channel spacing for all MCS rates (GF) MCS0 -89.5 dBm MCS 1 -86 dBm RX sensitivity (10% PER for 4096 MCS 2 -84 dBm octet PSDU)a MCS 3 -81.5 dBm Defined for default parameters: GF, MCS 4 -78.5 dBm 800 ns GI, and non-STBC. MCS 5 --73.5 dBm MCS 6 -72 dBm MCS 7 -70.5 dBm

6.2 Environmental Specifications

Item	Description
Operating temperature range	-40 deg. C to +85 deg. C
Storage temperature range	-40 deg. C to +85 deg. C
Humidity	95% max non-condensing

Note 1: The ISM43341 supports a functional operating range of -40 $^{\circ}$ C to +85 $^{\circ}$ C. However the optimal RF performance specified in this data sheet is only guaranteed for temperatures from -10 $^{\circ}$ C to +65 $^{\circ}$ C

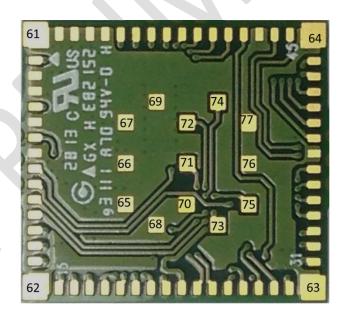
7 HARDWARE ELECTRICAL SPECIFICATIONS

7.1.1 Absolute Maximum Ratings

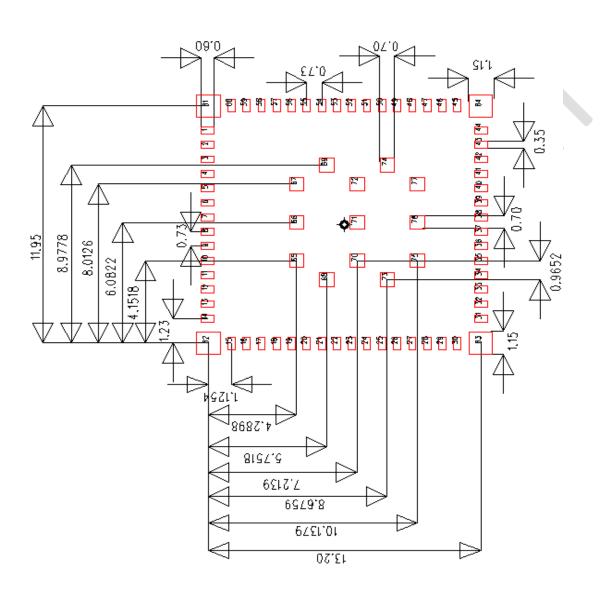
Symbol	Description	Min	Max	Unit
VDD	Input supply Voltage	-0.4	3.7	V
VBAT	Battery Backup	-0.4	3.6	V

7.1.2 Recommended Operating Ratings

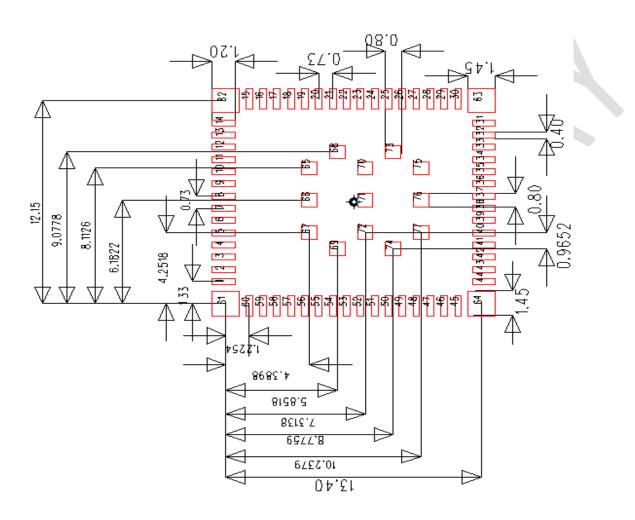
Symbol	Min.	Тур.	Max.	Unit.
VDD	3.0	3.3	3.6	V
VBAT	3.0	3.3	3.6	V



Module Pin-Out (1 of 2) 8 듆 8 23 BT_REG_ON WL_REG_ON JTAG_SEL NFC_SWPIO_0 GND12 WL_GPIO6 GND6 VBAT2 GND13 GND11 GND10 VBAT1 WL_GPIOO NFC_CSX NFC_URX WL_GPI01 SND GND GND8 GND7 1 5G_RF SD_D3 2 GND1 SD_D2 42 GND2 SD_D1 41 5G/2G_RF SD_D0 5 40 GND3 SD_CMD 6 39 WRF_RFIN_2G SD_CLK 7 38 GND5 GND4 8 37 NFC_GPIO_0 WRF_GPIO_OUT 9 36 RF_SW0 NFC_SPI_INT 10 35 RF_SW3 NFC_SCL 11 34 RF_SW4 NFC_SDA 12 33 BT_HOST_WAKE NFC_TX1 13 32 32KHZ_SLEEPCLK NFC_TX2 14 31 NFC_REG_PU NFC_CTS 15 30 BT_I2S_DO NFC_RTS 29 16 BT_I2S_CLK NFC_VDDSWP_0 NFC VDDSWPIN 0 BT DEV WAKE BT_UART_RXD BT_PCM_SYNC BT_UART_TXD BT_PCM_OUT BT_UART_RTS BT_UART_CTS BT_PCM_CLK BT_PCM_IN BT_IZS_WS N 2 33 Ŕ


7.1.2 Module Pin-Out (2 of 2)

		WL_GPIO5	68
65	GND15	WL_GPIO6	70
66	GND16	WL_GPIO2	71
67	GND17	WL_GPIO3	72
69	GND18	WL_GPIO4	73
77	GND19	WL_GPIO12	74
		NFC VDDSWP 0	75
		NFC_SWPIO_0	76



7.1.3 Module (Bottom View)

7.1.4 Recommended PCB Footprint (Top View)

7.1.5 Detailed Pin Description

Pin				
No.	Name	TYPE	Description	
1	RFIN_5G	RF in	RF IN 5G	
2	Ground	G	GRD	
3	Ground	G	GRD	
	5 GHZ & 2.4 G RF			
4	in	RF in		
5	Ground	G	GRD	
6	2.4 G RF in	RF in	RF IN 2G	
7	Ground	G		
8	WRF_GPIO_OUT	G	GPIO_OUT	
9	RF_SWO	0	Ext. RF Switch Enable -NC	
10	RF_SW3	0	Ext. RF Switch Enable -NC	
11	RF_SW4	0	Ext. RF Switch Enable -NC	
12	BT_HOST_WAKE	0	BT_Host_Wake to Host Active High	
13	32 Khz sleep clk			
14	NFC_REG_PU	1	NFC Regulator Power Up Active High	
15	BT_12S_DO		BT_I2S DO	
16	BT_125_CLK		BT I2S CLK	
17	BT 12S WS		BT I2S WS	
18	BT_PCM_SYNC		BT PCM Sync	
19	BT PCM CLK		BT PCM Clock	
20	BT PCM OUT		BT PCM Out	
21	BT_PCM_IN		BT PCM In	
22	BT_DEV_WAKE	1	BT Dev Wake up from Host Active High	
23	Vio	V	I/O Supply Voltage (1.8-3.3V)	
24	BT_UART_CTS_L	1	BT_UART_CTS_N	
25	BT_UART_RTS_L	0	BT_UART_RTS_N	
26	BT_UART_TXD	1/0	BT_UART_TXD	
27	BT_UART_RXD	1/0	BT_UART_RXD	
28	NFC_VDDSWPIN_0	-	NFC single wire protocol and power - UICC	
29	NFC_VDDSWP_0	0	NFC single wire protocol and power	
30	NFC_RTS	0	NFC UART Request to Send	
31	NFC_CTS	1	NFC UART Clear-to-Send	
32	NFC_TX2	RF	NFC antenna TX/RX Pin 2	
33	NFC_TX1	RF	NFC antenna TX/RX Pin 1	
34	NFC_SDA	1/0	BSC data for EEPROM	
35	NFC_SCL	0	BSC clock for EEPROM	

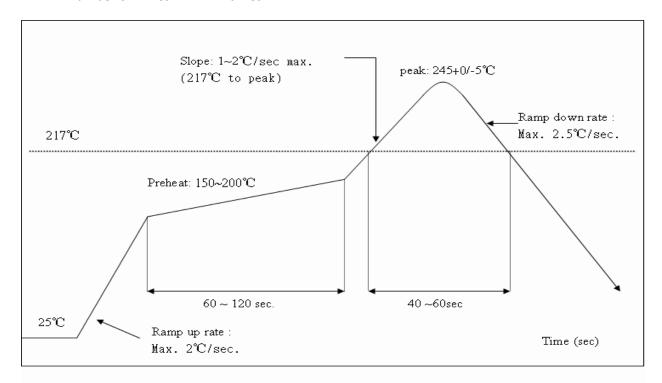
			ISM43341 Produ
36	NFC_SPI_INT	I/O	NFC Host Interface/Select SPI interrupt
37	NFC_GPIO1	1/0	NFC GPIO
38	GND	G	Gnd
39	SDIO_CLK	1	SDIO clk
40	SDIO_CMD	I/O	SDIO command Lin or data input
41	SDIO_DATA_0	I/O	SDIO data
42	SDIO_DATA_1	I/O	SDIO 1
43	SDIO_DATA_2	I/O	SDIO 2
44	SDIO_DATA_3	I/O	SDIO 3
45	NFC_URX	1	NFC UART RX
46	NFC_UTX	0	NFC UART TX
47	GND	G	Ground
48	NFC_SWPIO_0	I/O	NFC single wire protocol and power
49	JTAG_SEL		JTAG Select (High to select JTAG)
50	WL_REG _ON	I	Wireless LAN Power up (Active high)
51	BT_REG_ON	1	Power up Bluetooth (Active High)
52	GPIO_0	0	GPIO
53	GPIO_1	1/0	GPIO
54	GPIO_6	1/0	GPIO
55		VBAT	3.3v
56		VBAT	3.3v
57		G	Ground
58		G	Ground
59		G	Ground
60		G	Ground
61		G	Ground
62		G	Ground
63		G	Ground
64		G	Ground
65		G	Ground
66		G	Ground
67		G	Ground
68		G	Ground

69		G	Ground
70		G	Ground
71	WL_GPIO2		WL_GPIO2
72	WL_GPIO3		WL_GPIO3
73	WL_GPIO4		WL_GPIO4
74	WL_GPIO5		WL_GPIO5
75	WL_GPIO_12		WL_GPIO_12
76		G	Ground
77		G	Ground

8 Product Compliance Considerations

RoHS: Restriction of Hazardous Substances (RoHS) directive has come into force since 1st July 2006 all electronic products sold in the EU must be free of hazardous materials, such as lead. Inventek is fully committed to being one of the first to introduce lead-free products while maintaining backwards compatibility and focusing on a continuously high level of product and manufacturing quality.

EMI/EMC: The Inventek module design embeds EMI/EMC suppression features and accommodations to allow for higher operational reliability in noisier (RF) environments and easier integration compliance in host (OEM) applications.


FCC/CE: The module will be in compliance test for FCC/CE

9 Reflow Profile

• Reference the IPC/JEDEC standard.

Peak Temperature: <250°CNumber of Times: ≤2 times

10 Packaging Information

10.1 MSL Level / Storage Condition

Caution This bag contains MOISTURE-SENSITIVE DEVICES Do not open except under controlled conditions 1. Calculated shelf life in sealed bag: 12 months at< 40°C and < 90% relative humidity(RH)
225°C 240°C 250°C 260°C 2. Peak package body temperature:
3. After bag is opened, devices that will be subjected to reflow solder or other high temperature process must a) Mounted within: 48 hours of factory conditions <30°C/60% RH, OR b) Stored at <10% RH
 Devices require bake, before mounting, if: a)Humidity Indicator Card is>10%when read at 23±5℃ b)3a or 3b not met
5. If baking is required, devices may be baked for 24 hours at 125±5°C
Note: If device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure
Bag Seal Date: See-SEAL DATELABEL
Note:Level and body temperature defined by IPC/JEDED J-STD-020

10.2 Device baking requirements prior to assembly

Boards must be baked prior to rework or assembly to avoid damaging moisture sensitive components during localized reflow. The default bake cycles is 24 hours at 125C. Maintaining proper control of moisture uptake in components is critical. Before opening the shipping bag and attempting solder reflow, you should maintain a minimal out-of-bag time and ensure the highest possible package reliability for the final product.

11 REVISION CONTROL

Document : ISM43341	Wi-Fi SIP module
External Release	DOC-DS-20023

Date	Author	Revision	Comment
1/15/2015	FMT	1.0	Preliminary
11/17/2015	KMT	1.1	Update
1/12/2016	KMT	1.2	Pin list update

12 CONTACT INFORMATION

Inventek Systems 2 Republic Road Billerica Ma, 01862 Tel: 978-667-1962

Sales@inventeksys.com

www.inventeksys.com

Inventek Systems reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. The information contained within is believed to be accurate and reliable. However Inventek Systems does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.